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Abstract—Steady-state modeling plays an important role in
the design of advanced power converters. Typically, steady-state
modeling is completed by time-stepping simulators, which may
be slow to converge to steady-state, or by dedicated analysis,
which is time-consuming to develop across multiple topologies.
Discrete time state-space modeling is a uniform approach to
rapidly simulate arbitrary power converter designs. However,
the approach requires modification to capture state-dependent
switching, such as diode switching or current programmed
modulation. This work provides a framework to identify and
correct state-dependent switching within discrete time state-space
modeling and shows the utility of the proposed method within
the power converter design process.

I. INTRODUCTION

The power electronics design process often utilizes several
iterations of modeling and prototyping to achieve the goal
performance. The general process from design specification to
verification typically involves several iterations of steady-state
converter modeling or simulation across varying topologies,
followed by dedicated converter-specific simulation to reach
a prototype-ready design [1]. The broad-scale initial design
phase is the focus of this paper, where the steady-state model-
ing of many converter topologies, discrete components, mag-
netics, and frequencies results in a quasi-ordered optimization
problem.

Several techniques can be utilized to complete the initial
design phase. Mathematical approximations such as averaged,
lossless, or fundamental harmonic analysis can capture the
dominant dynamics of specific converter topologies. However,
these models take time to produce and do not readily translate
to other topologies without experience-based assessment of
the validity of the approximations. More detailed models that
can capture a wider array of converters become too large to
employ rapidly, even with advanced computational power [2],
[3].

Commercial time-stepping simulators such as LTspice or
Simulink are built to handle arbitrary circuit topologies and
provide a singular platform to draw comparisons. These sim-
ulators typically use nodal or state-space analysis to linearize
the converter waveforms within a small time step [4]. However,
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Fig. 1. Detailed flow diagram of broad electrical domain design of a
synchronous buck converter. Exss is the error between the initial and final
state values, and EVF

is the error of the final voltage value at the end of each
deadtime to the forward voltage of the transistors. The red dots on the right
figure indicate the timestamp for one period of simulation. The blue triangles
represent intermediate values solved for within the period.



to produce an optimal design, thousands or millions of con-
figurations are iteratively modeled and assessed, which can be
extremely time consuming for time-stepping simulators. The
top row of Fig. 1 shows an example of the convergence of
time-stepping simulators. Unless accurate initial conditions are
provided, an initialization stage is used to reach the correct op-
erating dynamics of the converter. During this time, waveforms
and values within the converter can widely vary and vastly
deviate from the steady-state operating point. Convergence
to steady-state may require simulation over many periods, as
large, low-loss filter elements will exhibit underdamped low-
frequency transient resonance. Thus, the time to reach steady-
state can take multiple seconds for a single converter design.

Improvements have been made to expedite the steady-state
convergence of time-stepping simulation using optimization
techniques. The Quasi-Newton method with Broyden’s Up-
date [4], used in PLECS, can provide a much faster solution,
as shown in the middle row of Fig. 1. This technique uses
Newtonian iteration to solve the error minimization problem

min
x(0)

[
f(x(0)) = ||x(Ts)− x(0)||

]
(1)

where x(t) ∈ IRns is the vector of the ns circuit states and
x(Ts) is evaluated through time-stepping simulation over one
switching period. While this approach works well for simple
topologies, Jacobian calculation becomes expensive and con-
vergence is not guaranteed for more-complicated topologies
with many energy storage elements or simple topologies with
many parasitic elements, due to iteration in an n-dimensional
space.

The iterative optimization techniques in broad-scale design
require a method that is general, yet fast to model the steady-
state of converters. Discrete time state-space modeling is a
uniform approach to rapidly simulate arbitrary power converter
designs. Instead of reducing the error of the initial and final
state values, discrete time state-space modeling directly solves
for the steady-state vector x(0) in closed-form. However, the
solution requires a predefined switching pattern, which may
not be known a priori in the presence of state-dependent
switching, such as diode switching or current programmed
modulation. In this event, the technique again requires an
iterative solution, this time altering the switching times (as
opposed to the initial states), as shown in the bottom row of
Fig. 1.

This work provides a framework to identify and correct
state-dependent switching within discrete time state-space
modeling and shows the utility of the proposed method within
the power converter design process. Section II reviews discrete
time state-space modeling and the difference between state-
independent and state-dependent switching. Section III pro-
vides an overview of the different categories of state-dependent
switching, presents the proposed algorithm to find the steady-
state of a converter with state-dependent switching, and shows
a comparison to other simulation methods. Experimental re-
sults in Section IV illustrate the accuracy of the proposed
modeling method, and the paper is concluded in Section V.

II. DISCRETE TIME STATE-SPACE MODELING

Discrete time state-space modeling is a generalized analysis
framework for both steady-state and dynamic modeling of
switched circuits [2], [5]–[9]. As long as the converter can
be approximated as a linear-equivalent circuit within each
switching interval, a switched mode power supply can be
modeled within each switching interval i using the state-space
equations

ẋ(t) = Aix(t) +Biu(t) (2)

y(t) = Cix(t) +Diu(t). (3)

The state vector, x, contains the capacitor voltages and induc-
tor currents from the circuit, and the output vector, y, is any
combination of node voltages or component currents contained
within the converter. The solution to the state equation during
any single switching interval, assuming all independent inputs
are constant, is

x(t) = eAitx(0) +A−1
i [eAit − I]Biu. (4)

By solving (4) over the set of n linear-equivalent circuits
within one switching period, the periodic steady-state solution
(x(0) = x(Ts)) is

Xss =

[
I−

n∏
i=1

eAiti

]−1

×
n∑

i=1

[( n∏
k=i+1

eAktk

)
A−1

i [eAiti − I]Biu

]
. (5)

After solving (5), the value of x(t) at any time within the
period can be solved for using (4).

The initial limitations of discrete time state-space modeling
via (5) include assuming all inputs to be constant during each
switching interval u(t) ≈ u, ensuring the state matrix Ai is
invertible during each switching interval, approximating each
switching interval as a linear-equivalent circuit, and knowing
the duration of each switching interval ti before solving
the steady-state of the converter using (5). Implications and
mitigation methods for the first three of these limitations are
discussed in [3]; this work focuses on the last.

A. State-Independent and State-Dependent Switching

Power converters are assumed to be well-modeled as piece-
wise linear to employ (5). Each switching action, either by a
transistor or diode, alters the linear-equivalent model of the
converter by changing the conduction resistance or forward
voltage lumped elements in the linear-equivalent model. The
time intervals and their associated linear-equivalent circuits
must be known before solving (5).

State-independent or active switching actions caused by a
controller driving a transistor are set independently by an
external signal. Thus, the timing of each of these switching
actions are known a priori for a given converter design and
steady-state operating point. However, state-dependent or pas-
sive switching, such as a diode conducting due to its forward
threshold voltage being reached, occurs at a time dictated by



the internal waveforms of the converter. The presence of state-
dependent devices results in a nonlinear state-space description
within a single switching interval,

ẋ(t) = Ai(x)x(t) +Bi(x)u(t). (6)

Alternatively, if the state-dependence can be modeled as
piecewise linear, the system can continue to be modeled as
linear as in (2). In this case, matrices within an interval where
a state-dependent switching action occurs will be split into two
(or more) subintervals, e.g. for a diode with different forward
biased (on) and reverse biased (off) equivalent circuits,

Ai =

{
Ai,D(on), if − Vd ≥ VFW

Ai,D(off), otherwise
(7)

and similar for Bi. The time-duration of each individual subin-
terval impacted by state-dependent switching is not known
without additional analysis. Because (5) always solves for
the steady-state of the converter, other states throughout the
converter are altered whenever the timing of these switching
actions is altered. To maintain the merits of the direct steady-
state solution (5), the time-duration of each subinterval must
be solved such that (7) remains valid at every instant in the
steady-state solution waveforms.

An example of passive switching due to the body diodes in
the synchronous buck converter of Fig. 2 is shown in Fig. 3.
The piecewise linear model of each MOSFET is implemented
as a variable voltage source and resistance,

V F,Mi
=

{
VFW , if Vds,i ≤ −VFW

0, otherwise
(8)

Ron−off,Mi
=


Rds(on),i, if Mi on
Rd,i, if Vds,i ≤ −VFW

∞, otherwise
. (9)

The diode conduction behavior is unknown prior to solving
the steady-state of the converter via (5). An initial guess for
the switching interval time-durations supposes that the body
diodes do not turn on during the deadtime. The steady-state
solution under this assumption, given by the red dashed line in
Fig. 3, contains a violation of (7). Namely, the switched-node
voltage vsw resonates below −VFW , where the diode should
turn on. Only observing the discrete time samples, this error
can be seen because the voltage vsw at the end of the period
is well below the forward voltage.

To correct this violation, a new time interval must be
introduced to the converter where the body diode of M2

conducts. This splits the original deadtime interval into two
separate subintervals with their own linear-equivalent circuit as
shown in Table I. Assuming the correct time-duration of each
subinterval is found, this change results in a valid steady-state
solution as shown by the solid blue line in Fig. 3. Note that, by
introducing or changing the duration of switching intervals in
the converter, the initial states at the beginning of the deadtime
have changed due to the new steady-state solution; the correct
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Fig. 2. Synchronous buck converter and equivalent transistor representation
used in Fig. 1 and Fig. 3.
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Fig. 3. Waveform of a synchronous buck converter after the high side device
turns off. The initial guessed deadtime length is too long between active
switching actions.

tBD(on) is not equal to the amount of time that vsw < −VFW

in the intial solution.
Both the initial and final solutions in Fig. 3 are in steady-

state, i.e. x(0) = x(Ts), as enforced by the solution of
(5). However, only the final solution exhibits a steady-state
waveform with no violations of (8)-(9).

B. Steady-State Solution with State-Dependent Switching

To model the presence of state-dependent switching actions,
the following notation is used. The index i consistently refers
to the switching interval order as determined by only the state-
independent (i.e. active, or externally-controlled) switching
actions, i ∈ {1, 2, ..., n} for n active switching intervals. The
vector p ∈ Nn contains the number of distinct subintervals in
each active switching interval due to state-dependent switch-
ing. The index j refers to switching subintervals within the



TABLE I
BUCK CONVERTER DEADTIME SOLUTION

Initial Solution

Time Interval tdt

Circuit Model Ai,BD(off)

Conducting Devices —

Final Solution

Time Interval
tdt

tBD(off) tBD(on)

Circuit Model Ai,BD(off) Ai,BD(on)

Conducting Devices — M2,BD

ith interval that occur due to the presence of state-dependent
switching; in interval i, j ∈ {1, ..., pi}. State matrices A(i,j)

and B(i,j) model the linear-equivalent circuit within the jth

passive subinterval of the ith active interval. In all cases
A(i,1) = Ai, as defined by (2).

Subinterval time-durations are indexed accordingly, such
that

ti =

pi∑
j=1

t(i,j). (10)

To find the valid steady-state of a power converter using
discrete time state-space modeling, each passive switching
action must be found within each active switching action. The
active switching time intervals are modeled as

Xss =

[
I−

n∏
i=1

Φi

]−1 n∑
i=1

[
Ψi

]
(11)

where

Φi =

pi∏
j=1

eA(i,j)t(i,j) (12)

and

Ψi =
pi∑
j=1

[( n∏
k=i+1

Φk

)( pi∏
k=j+1

eA(i,k)t(i,k)

)

×A(i,j)
−1
[
eA(i,j)t(i,j) − I

]
B(i,j)u

]
. (13)

For each active switching time interval i, there is a set of
pi passive switching time intervals which solves the steady-
state of the converter such that all state-dependent switching
constraints (e.g. (7)) are satisfied. In general, this sequence is
solved through numerical iteration.

For the specific case of state-dependence arising from diode
conduction, this iteration is employed to ensure the inequality

E(i,j)

(
yD + V F

)
< 0 (14)

where E(i,j) is a vector of ±1 values to indicate whether a
diode is conducting or blocking, V F is a vector of each diode’s

forward voltage, and yD is a vector of instantaneous diode
voltages during the entirety of the steady-state waveforms,

yD(t) = CD(i,j)x(t) +DD(i,j)u(t) (15)

for appropriately-derived CD and DD.
The goal of the framework is to solve a steady-state solution

consisting of interval durations ti,j and the associated conduc-
tion ordering of all switching devices constrained by (10) and
solve the steady-state initial condition for each iteration from
(11) while ensuring that (14) holds for any time t ∈ [0, Ts]
within the switching period.

C. Example Convergence of Synchronous Buck

To examine the constraints on an iterative solution account-
ing for passive switching, Fig. 4 shows an example of the
solution space for the synchronous buck converter of Fig. 2.
The converter operates in CRM with ZVS and has parameters
as listed in Table II.

TABLE II
EXAMPLE SYNCHRONOUS BUCK PARAMETERS

L1 500 nH Coss,M1 190 pF
C1 100 µF Coss,M2 880 pF
Rl 1 mF Rds 2.5 mΩ

Vg 48 V fs 200 kHz
Io 1 A D 1

48

Fig. 4 shows the error in state-dependent conditions at the
discrete time sampling points, as the two deadtimes of the
buck converter are independently varied from 0.1% to 3.3%
of the switching period Ts. In all cases, both transistors are
treated as switches as modeled in Fig. 2; no attempt is made
in this example to account for body diode conduction in order
to examine the solution space. The error shown in Fig. 4 is

Err =


vsw − (Vg + VFW ), if vsw > (Vg + VFW )

vsw + VFW , if vsw < −VFW

0, otherwise
(16)

and models the magnitude of the spurious over-voltage or
under-voltage at the switch node, which would be clamped
by body diode conduction in the converter.

When only the discrete sampling points are examined, there
are multiple zero-error regions, where only the points near
the minimum values of td1 and td2 are valid. Fig. 5 shows
the waveforms during each deadtime interval of two operating
points from Fig. 4. Operating point 1 is in the valid zero-error
region, with td1/Ts = 0.17% and td2/Ts = 0.23%. Operating
point 2 is in an invalid zero-error region, with td1/Ts = 1.8%
and td2/Ts = 1.5%. Note that, examining only the discrete
time points (green diamonds), both operating points have
sampled vsw within the boundaries of diode conduction at the
beginning and end of the subinterval. However, when the full
waveforms of both points are examined, only operating point
1 is valid at every time instant within the subinterval.



Fig. 4. Passive switching error for the synchronous buck converter considering
only the discrete sampling points.
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Fig. 5. Example complete waveforms (solid blue lines) and discrete sampling
points (green diamonds) for both deadtimes, and two operating points, of the
synchronous buck converter.

Fig. 6 shows the error function over every point in the
waveform, rather than solely the discrete time samples. In this
case, only valid waveforms show zero error; however, local
minima still exist at the invalid operating points from Fig. 4.

Data in Fig. 6 is obtained by time-stepping through a single
period of the steady-state solution from (5) with the prescribed
deadtimes. Though errors outside of the discrete sampling
points can be identified, this process is computationally in-
tensive and greatly increases the simulation time. Thus, the
process should be avoided unless necessary.

The solid red line in both Fig. 4 and Fig. 6 indicates the
region of convergence (RoC) for a theoretical gradient-based
error minimization algorithm. As long as the initial guess
for the converter deadtimes is within this region, a gradient-

Fig. 6. Passive switching error for the synchronous buck converter considering
full continuous-time waveforms.

descent method will arrive at a valid operating point. The
dashed magenta line in both figures represents a boundary
based on the natural frequencies of the converter, as discussed
in the following section. In this case, limiting both dead-
times according to the natural frequencies of the state matrix
guarantees timing durations within the RoC. The synchronous
buck converter presents a relatively simple case for examining
the solution space for a passive switching algorithm. Other
topologies, which may exhibit multiple passive switching
actions within a single interval or where error resulting from
passive switching violations has a stronger impact on the
complete steady-state waveform, exhibit a higher degree of
non-convexity in the solution space.

The following section develops an algorithm to system-
atically check and address passive switching constraints to
eventually converge to a valid steady-state solution.

III. PASSIVE SWITCHING CORRECTION

Due to the nonlinearity of the problem, an iterative nu-
merical approach is used to obtain the correct steady-state
solution in the presence of state-dependent switching actions.
In each iteration, the duration of passive switching intervals
may be altered, or new switching states may be inserted or
removed from the switching pattern. This section discusses the
implementation of a method to determine the iterative changes
to the switching pattern and subinterval timing such that the
steady-state solution converges to a violation-free result in the
presence of state-dependent switching actions.

For subintervals where the slope of the waveform exhibiting
a violation is nearly constant, such as vsw in Fig. 3, the
identification of an invalid steady-state solution due to passive
switching is easily solved by evaluating the discrete time
points and their derivatives. The length of the body diode time
interval in the synchronous buck converter example can be
solved by taking the partial derivative of the state variables
at the discrete switching points with respect to the time



TABLE III
CATEGORIES OF FREQUENCY DYNAMICS IN THE PROPOSED METHOD

Tier Condition

Constant slope
sgn(ẋ(tb)) = sgn(ẋ(te)) &

π
Im(eig(A))

> te − tb

Single-Frequency
One violation of: π

Im(eig(A))
> te − tb ‖

sgn(ẋ(tb)) 6= sgn(ẋ(te))

Multi-Frequency Multiple violations of: π
Im(eig(A))

> te − tb

t

vsw
tM1,off

Fig. 7. Non-synchronous buck converter switch node waveform with a small
stray loop inductance added in series with transistor.

interval [3]. Nearly-constant slope subintervals occur when
the duration of the subinterval is significantly shorter than the
dominant dynamic frequencies of the circuit. When the inverse
is true, highly resonant or multi-resonant dynamics are present,
and the violations are more difficult to identify and correct.

Eigenvalues of Ai are used to observe the natural frequen-
cies of each sub-interval. The natural frequencies of each
state matrix, along with the discrete time sample derivatives,
separate each time interval of a converter into three distinct
categories, each having their own identification and feasible
state-dependent switching correction method.

The first tier, the ‘constant slope’ category, is similar to
the example in Fig. 3. The natural frequencies of the circuit
are sufficiently small such that, within the subinterval, the
derivatives of the state variables associated with the violation
are nearly constant. The second tier, the ‘single-resonant’
category, arises when a single natural frequency has a period
which is less than, or nearly equal to, the subinterval time-
duration. The third tier, the ‘multi-resonant’ category, occurs
when the eigenvalues indicate multiple natural frequencies are
faster than the time interval.

The conditions of these tiers are outlined in Table III, with
tb and te representing the beginning and ending times of the
time interval, respectively, and an example of the single- and
multi-resonant categories is shown for a non-synchronous buck
converter with a small power loop inductance in Fig. 7. The
loop inductance causes a single-resonance while the transistor
is turned on and multi-resonance while the transistor is off
during the deadtime interval.

When dynamics in the second or third tier occur, the simple
slope-projection method of [3] is insufficient to dictate a
correction for the ensuing iteration.
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addressed in the proposed method.

A. Algorithm

The proposed implementation of the eigenvalue and deriva-
tive checks for discrete time state-space modeling of power
converters is shown in Fig. 8. After finding the steady-state of
the active switching intervals of a converter, the eigenvalues
are first checked and recorded for each subinterval.

If there is a violation during a multi-resonant interval,
the converter is time-stepped for one period to find the
approximate location of any state-dependent switching actions.
Because the time-stepping begins from an initial state Xss,



TABLE IV
STEADY-STATE SOLVE TIME OF SIMULATION METHODS

Convergence Time (sec)1

Simulation DAB HDSC Buck Flyback Buck-boost

LTspice 3.78 7.39 0.79 8.33 2.95
PLECS

-Transient 7.82 3.20 2.20 9.16 4.34
-Steady-State - - 21.11 - -

Proposed Method
-Total 5.00 2.96 0.52 6.98 3.52
-Solver only 0.87 0.01 0.03 5.85 0.71
-Time-stepping

0 0 0 7 0
iterations

1 All simulations performed on a laptop computer with an Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz processor, 16 GB of RAM, and
a 64 bit operating system.

TABLE V
STEADY-STATE SOLVE CONVERTER PROPERTIES

Amount
Parameter DAB HDSC Buck Flyback Buck-boost

State Variables 11 13 4 7 9
Time Intervals 8 4 4 2 12

which exhibited passive switching violations, the time-stepped
period will, in general, not result in steady-state. Steady-state
is then re-solved using (5), with the new switching pattern and
time intervals found from time-stepping.

If no multi-resonance is detected, diode voltages at each
discrete time interval are first examined for violations. If a
single-resonance is detected, additional discrete time samples
are solved for every quarter period of the fastest natural
frequency of the converter. Using these additional discrete time
points, a binary search is completed to quickly determine if
there is a state-dependent switching violation within the time
interval. Intervals where states have semi-constant slopes are
identified and corrected using the method from [3].

There are certain cases in which the proposed algorithm
still exhibits slow convergence to steady-state. For example,
if an initial multi-frequency violation is detected, additional
diode conducting time intervals may be placed throughout
the steady-state waveform of the converter. If the steady-
state solution is not sufficiently close to the final steady-state
value, small adjustments in state-dependent switching times
can greatly alter the behavior of the converter. Such conditions
are likely to occur if multiple extended diode conduction times
are required to achieve steady-state or resonant combinations
throughout the period. Evaluating and eliminating each viola-
tion takes multiple iterations of the algorithm; thus, after 50
iterations, the converter is solved via time-stepping through
one period. This resets the diode conduction time intervals at
an initial condition closer to the steady-state value.

B. Simulation Verification

Several different types of converters are used to verify the
proposed algorithm against other simulation tools in terms
of real-time convergence speed. The DAB, HDSC, and buck
converters are the same as detailed in [3]. The flyback and
buck-boost are modeled after the experimental prototypes in
Fig. 9 and Fig. 10, respectively. In each case, the transistors
are modeled as shown in Fig. 2. Additionally, for LTspice
and the PLECS transient method, waveform data is not saved
until the steady-state of the converter is reached. Although
this method requires the simulation time to reach steady-state
be known before simulation, it provided a fairer comparison
across all methods since only steady-state waveforms are
being considered. The results of the simulation verification
are shown in Table IV, with Table V displaying the number
of state variables and time intervals for each converter. The
proposed method does require some initialization time, as
indicated by the large initial gap in error point in Fig. 1. This
initialization consists of parsing a circuit netlist to obtain the
Ai and Bi matrices of the topology. The solver time for the
proposed method shows the time to reach steady-state after
initialization. Circuit parsing is completed symbolically, such
that the process would not be repeated in an optimization
routine if there are no changes to the base topology.

The simulation results show the dual-active bridge converter
and the hybrid Dickson switch capacitor converter take longer
to initialize in the proposed method because of their high
number of states. Only the flyback converter takes an extended
period of time to solve due to the extended ringing caused
by the leakage inductance of the transformer. Regardless, the
solver time of the proposed method is well below that of any
commercial tool in Table IV.

IV. EXPERIMENTAL VERIFICATION

The flyback converter shown in Fig. 9 shows the progression
of the proposed method through all three possible conditions.
The converter is an evaluation board (EVAL-CN0342-EB1Z)
with a 1:1 transformer and a RCD snubber network. Initially,
only two switching intervals are known, since there is only one
active switch in the converter, M1. During the extended time
when D2 should be on, there is a multi-resonance that requires
time-stepping to correct. The steady-state of the converter is
then solved using the linear projection method. The simulation
timing results are shown in Table IV.

The buck-boost converter shown in Fig. 10 is an example
of the versatility of the proposed method for more than just
diode violation correction, but also for other types of state-
dependent switching. The converter uses EPC GaN devices
with a 4.4 µF flying capacitor and 200 nH inductor. The initial
guess of time intervals causes the converter to behave non-
ideally, since the inductor current is unbalanced across Ts

2

and the flying capacitor is less than Vout

2 . Other simulators
would require a control loop to account for this imbalance
[10], [11]. However, in the proposed method, a constraint is
placed on the inductor current, similar to the diode forward
voltage constraint, to force iL = 4.9 A at Ts

2 and Ts, emulating
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Fig. 10. Buck-boost converter prototype and schematic (a), experimental waveforms (b), modeled waveforms (c).

a valley-current programmed mode controller. The proposed
method finds the final solution consistently in under 4 seconds.

V. CONCLUSION

This work proposes a method to quickly solve the steady-
state of power converters with state-dependent switching using
discrete time state-space modeling. The state matrix eigen-
values are examined to determine the method needed to
identify and correct passive switching. The proposed method
gives an expanded capability to rapidly model state-dependent
switching in power converters. Simulation results show the
rapid convergence of the method compared to other simulation
tools.
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