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Abstract—With the recent proliferation of open-source packages
for computing, power system differential-algebraic equation (DAE)
modeling and simulation are being revisited to reduce the program-
ming efforts. Existing open-source tools require manual efforts
to develop code for numerical equations, sparse Jacobians, and
discontinuous components. This paper proposes a hybrid symbolic-
numeric framework, exemplified by an open-source Python-based
library ANDES, which consists of a symbolic layer for descriptive
modeling and a numeric layer for vector-based numerical compu-
tation. This method enables the implementation of DAE models
by mixing and matching modeling components, through which
models are described. In the framework, a rich set of discontinuous
components and standard transfer function blocks are provided
besides essential modeling elements for rapid modeling. ANDES
can automatically generate robust and fast numerical simulation
code, as well as and high-quality documentation. Case studies
present a) two implementations of turbine governor model TGOV1,
b) power flow computation time break down for MATPOWER
systems, c) validation of time-domain simulation with commercial
software using three test systems with a variety of models, and d) the
full eigenvalue analysis for Kundur’s system. Validation shows that
ANDES closely matches the commercial tool DSATools for power
flow, time-domain simulation, and eigenvalue analysis.

Index Terms—Power systems, open-source, DAE modeling,
symbolic calculation, time-domain simulation, ANDES library.

I. INTRODUCTION

POWER system modeling and transient simulation is a
widely studied yet challenging topic. Digital computer-

based simulation has been dominating in the industry and
academia with both closed-source tools [1] and open-source
tools [2]–[11] widely used. Although simulation software comes
with a set of built-in models, users will likely need to customize
models for new devices or control algorithms.

To develop new models for simulation software is to imple-
ment the model equations in a program that can interact with
the predefined software architecture. In general, there are two
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approaches to implement user-defined models (UDMs): pro-
grammatically or through a graphical user interface (GUI) [12],
[13], which is usually not available in open-source tools due to
complexity and lack of return. Still, open-source tools are crucial
for scientific research, but they require programming proficiency
to develop new models on top of a deep understanding of the
tool [14].

Two advanced UDM solutions exist in open-source tools:
Dome cards [5] and the Function Mockup Unit (FMU) support
in GridDyn [8]. Dome cards are plain-text files containing model
descriptions in the card protocol. Using a symbolic library under
the hood, Dome uses cards to generate intermediate code that
can be modified into final models. Although cards are flexible,
they do not live with the simulation code, and manual tweaks
are often required. On the other hand, FMU is compiled directly
from Modelica, an equation-based modeling language. Model-
ica libraries such as OpenIPSL [15] have been developed for
power system simulation. Although FMU has excellent speed
and interoperability through the Functional Mockup Interface
(FMI), it has seen few adoptions in power system tools due to
path dependence1 and, technically, data structure.2

This work proposes a hybrid symbolic-numeric method aim-
ing to reduce the efforts for modeling differential-algebraic
equation (DAE) in power systems while maintaining numerical
performance with the help of a symbolic toolbox. The proposed
method can be applied to major programming languages. An
implementation has been open-sourced as the ANDES library
written in Python, a scripting language suitable for power
systems research and rapid prototyping. Different from Dome
cards, symbolically defined models are part of the library and
distributed with the program. Main contributions are as follows:

1) The proposed hybrid symbolic-numeric method allows
simple scripting of DAE models with descriptive equation
strings instead of hard-coded implementations.

2) ANDES is the first open-source power system tool that en-
ables writing models from block diagrams using modular
discontinuous components and modeling blocks (such as
transfer functions and proportional-integral controllers).

3) The library can generate efficient and robust numerical
code from descriptive models for fast simulation.

1Most of the widely used commercial tools today have a vast library of built-in
models, which started to accumulate long before FMU was invented.

2In Modelica/FMU, models are written separately and used combinatorially.
Some implementations even require the precompilation of all possible combi-
nations.
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4) By preserving numerical interfaces, it can accommodate
models that are much easier to implement in the traditional
numerical way.

The prior works on symbolic modeling and our advance-
ments are discussed in the following. Decades ago, symbolic
approaches to power flow modeling [16], optimization [17],
[18], and device transients modeling [19]–[21] were introduced.
The pioneering works well proved the concept but exposed a
remaining issue: scalability. Namely, symbolic equations must
be written for each device instance rather than each model
type [20]. For large systems, a massive number of repetitive
symbolic equations need to be created, which are difficult to
maintain and solve. Besides, any system topology change re-
quires manual modification to equations and is thus prone to
errors. In contrast, the proposed library models the abstract
model type in the symbolic layer, agnostic to test systems.
Therefore, the computation time to process symbolic equations
scales to the number (and the complexity) of model types, not the
number of devices in any particular test case. In the generated
code, vectorization is utilized for speed, thus equations of all
devices of the same type are updated in the same function calls.

This paper is organized as follows. Section II discusses the
motivations and design philosophy of the work. Section III and
Section IV explain the techniques for the symbolic and numeric
layers with sufficient examples. Section V presents case studies,
including two implementations of the TGOV1 model, power
flow for MATPOWER systems [22], time-domain simulation
verification with DSATools TSAT using three test systems with
a variety of models, and full eigenvalue analysis. Section VI
concludes the proposed work.

II. MOTIVATIONS AND DESIGN PHILOSOPHY

The overarching goal of the proposed hybrid symbolic-
numeric method and its implementation in ANDES for power
system modeling and analysis is to make modeling as simple
as describing equations and make simulations as fast as using
crafted code. Simplifying DAE modeling renders the library
easy to use and modify for research and education. Maintaining
a fast simulation speed makes the library capable of running
large-scale studies. As discussed, a purely symbolic approach
will not scale to large systems, and a purely numerical approach
will not reduce the programming efforts. Therefore, a hybrid
approach is proposed to take advantage of symbolic and numeric
approaches in one library.

The design philosophy is two-fold: 1) to enable descriptive
modeling using provided modeling elements and blocks, and
2) enable robust and fast numerical simulation through code
generation and vectorization. The first item can be realized in
the symbolic layer in which model developers can mix and
match parameters, variables, discrete components to describe
DAE models. The second item can be realized through code
generation from symbolically defined equations and coordina-
tion of the numerical functions.

Fig. 1 shows the overview of the proposed hybrid symbolic-
numeric framework with the upper part for hybrid modeling and
the lower part for numerical simulation. This framework can

Fig. 1. Overview of the hybrid symbolic-numeric approach for modeling and
simulation. Red boxes with dotted border indicate the required manual efforts.

accommodate two modeling approaches: 1) the proposed sym-
bolic modeling approach using descriptive code, and 2) the tra-
ditional numerical modeling approach. The symbolic approach
is recommended due to simplicity and robustness because less
programming is needed. The symbolic layer can automatically
generate symbolic equations and Jacobians, which, altogether,
will be generated into loadable numerical code [23]. It ensures
the same models will be used for simulation and documentation
to achieve consistency between description and simulation. Al-
ternatively, the traditional numerical modeling approach can be
used if a model cannot be easily implemented in the symbolic
modeling approach.

The lower part of Fig. 1 shows the numeric layer in the pro-
posed framework for simulation. This layer organizes numerical
code for equations and Jacobians, which include these generated
by the symbolic layer and the manually written ones, to provide
interface methods for addressing, initialization, and equation
evaluation. Power system cases are loaded, and vector operations
are utilized for optimal performance in a scripting environment.
Routine developers can develop specific numerical routines by
calling the provided interface methods in specific orders.

The two-layer hybrid architecture also benefits the end-users
who are not looking to develop models but instead use the library
as a simulation tool. Procedures in the symbolic layer only
need to be executed once by the end-user, and the generated
code will be serialized to disk for future reuse. In terms of
simulation performance, the proposed framework is on par with
pure numerical libraries, since all computations in the numerical
layer use vector operations.
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Listing 1: Shunt model for power flow (imports are omitted for simplicity).

III. SYMBOLIC MODELING FRAMEWORK

This section describes the implementation of the symbolic
layer for the proposed library. The symbolic layer covers class-
based declarative modeling, symbolic processing, code genera-
tion, and automated documentation. Methods discussed in this
section are exemplified in the Python language with the SymPy
library but can be extended to other environments.

A. Basic Modeling Elements

The proposed library starts by observing that all DAE models
can be described with a few categories of basic modeling ele-
ments. Such categories include parameters, variables, discrete
components, and services:

1) Parameters are typically externally supplied data for defin-
ing specific devices.

2) Variables either differential or algebraic, are the unknowns
to be solved in the DAE system. Each variable is associated
with values and an equation.

3) Discrete Components describe the discontinuities, such as
limits, associated with variables.

4) Services are assisting types for simplifying expressions or
fulfilling supplementary actions.

The framework provides the above categories of modeling
elements that can be instantiated to describe DAE models.
Modeling elements are containers in both symbolic and numeric
layers. In the symbolic layer, modeling elements are containers
for metadata, such as name, description, unit, and equation
strings. In the numeric layer, they provide storage for associated
numerical data, such as values and addresses.

B. Classes for Descriptive Modeling

Python classes are the top-level containers to describe models.
A class for a DAE model can be created by defining class member
attributes using the provided modeling elements. The idea is
best explained with a simple example, such as a constant shunt
capacitor model for power flow given by

ph = −gv2h

qh = bv2h (1)

where h is the connected bus index, v is the bus voltage, p and
q are the power injections, and g and b are the conductance
and susceptance, respectively. The implementation for the Shunt
model is given in Listing 1 with the following remarks:

1) Lines 3–5 declares parametersbus,g, andb for bus index,
shunt conductance, and susceptance value.

Fig. 2. A typical PSS final output limiter.

2) Lines 6-9 declares external algebraic variables a and v for
voltage phase and magnitude at the buses whose indices
are bus.

3) Lines 7 and 9 declares the active power load (v2g) and re-
active power load (−v2b) on the power balance equations
associated with a and v.

4) The e_str equation strings contain a, v, b and b strings,
which are declared data attributes of the class.

It is important to note that Listing 1 is an abstract Shunt
model rather than just one particular Shunt device. The Shunt
model will host all Shunt devices of the same kind through
vectorization so that only one invocation is needed for each
equation. An excellent discussion on this design choice can be
found in Chapter 9.2 of [14].

Like a compiler, the underlying symbolic library requires
a list of symbols to process equation strings. The base class
Model handles the bookkeeping of member attributes for all
derived models. Models can automatically capture the names
and attributes instances to the corresponding storage in the
declaration sequence based on attribute type. In Python, this
is achieved by overloading the __setattr__() protocol,
which is invoked every time an attribute is assigned. Therefore,
the captured names will be converted to symbols for equation
processing. The approach allows us to keep the class definition
concise while automatically performs the bookkeeping.

Therefore, the efforts to develop DAE models have been
reduced. All that required is to set up correct element containers
and describe the mathematical equations.

C. Discrete Components

Discrete components such as limiters and deadlocks are com-
mon in practical models but are intricate to implement. They
often require manipulating equations and Jacobian, which, if not
implemented correctly, can halt simulations. In existing tools,
discrete components are implemented ad hoc and require manual
efforts to be ported from one model to another.

The proposed library provides discrete components that are
readily usable for describing DAE models. Discrete components
can export binary flags, which are evaluated in the numerical
layer, to indicate the discontinuous status. Flags can be used
in equations to construct piece-wise equations with the benefit
of not manipulating Jacobian matrices since discrete flags are
preserved as variables in the corresponding derivative equations.

For example, a hard limiter takes an algebraic variable and
two limit parameters as inputs and exports three flags, zi, zl,
and zu to indicate within, at the lower, and at the upper limits.
As a use case, consider a typical power system stabilizer (PSS)
output limiter shown in Figure 2, where the final output Vout

depends on the terminal voltage Vt and the given limits VCL

and VCU . The output limiter can be conveniently implemented

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 27,2021 at 16:17:39 UTC from IEEE Xplore.  Restrictions apply. 



1376 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 2, MARCH 2021

Listing 2: Stabilizer output limiter implementation.

Fig. 3. Illustration of Reduce and Repeat services for COI.

as in Listing 2, where Lines 1-2 creates a hard limiter called OL
that exports flags OL_zi, OL_zl and OL_zu. Line 3 utilizes
OL_zi to construct the output variable Vout with its equation
through e_str and the initial value equation through v_str.

D. Services

While the descriptive equation modeling is robust and
straightforward, one needs to realize the limitation: vector oper-
ations are limited to arithmetic calculations. Descriptive equa-
tions cannot handle programmatic operations such as conditions
and loops. Services are helper types to overcome such limitations
by allowing computing and storing values outside the DAE
system using user-defined functions. They are custom-computed
but used in the same way as variables.

An illustrative example is the calculation of inertia weights in
the center-of-inertia (COI) model. As shown in Figure 3, each
COI device links to a number of generators (stored in syn),
retrieves their inertia Hs, and needs to compute the weights on
the rotor speed for each linked generator. A numerical program
can quickly sum up the inertia and divide each inertia by the sum.
However, since element-wise vector operations do not allow
summation, the proposed library introduces two service types,
one to reduce Hs into Ht using a summation function and the
other to repeat the sum Ht into the same shape as Hs. The
element-wise division Hs/Ht can be performed thereafter.

E. Modeling Blocks

In addition to descriptive equation modeling, the library al-
lows us to write models directly from transfer function diagrams.
A similar concept was reported in the InterPSS controller mod-
eling language (CML) [24], which utilizes the Java Annotation
feature to provide a scripting environment for controller proto-
typing. ANDES allows the composition of modeling elements
into reusable modeling blocks, which can exports variables
with equation templates. Modeling blocks are instantiated as
class member attributes like variables. Upon instantiation, vari-
able name placeholders in equation strings will be substituted

Fig. 4. A chained transfer functions example.

Listing 3: Implementation of chained lag and lead-lag transfer functions.

with the actual names. About 20 commonly used proportional-
integral controllers and transfer functions, some with limiters,
have been implemented.

For example, the chained transfer functions in Figure 4 can
be implemented in barely two lines of self-explanatory code,
as given by Listing 3. Internally, model elements with their
equations tailored with the instance name will be exported and
captured by the hosting model class. Block outputs are always
named the block instance name with an underscore and letter
y. In this example, Line 1 exports a differential variable named
LG_y, which is passed as an input in Line 2. Similarly, the output
of the lead-lag instance is accessible as LL_y.

Modeling blocks can save efforts to reimplement equations
in different models and improve readability. In the meantime,
modeling blocks can be mixed with custom descriptive equations
using the exported variables whenever flexibility is needed.

F. Symbolic Processing and Code Generation

The symbolic processor converts the metadata, namely, equa-
tion strings, into symbolic expressions for symbolic Jacobian
derivation, code generation, and documentation. These func-
tionalities are part of the base Model class and will be inherited
by all derived models. An external symbolic library is utilized
to generate the symbolic expressions and Jacobian matrices for
each model with the following steps:

1) Prepare all variable symbols into a vector xy in the dec-
laration order so that each variable has a stable index.

2) Convert each equation string to a symbolic expression
(using sympy.sympify).

3) Group differential and algebraic expressions into two vec-
tors, f and g, respectively, in the declaration order.

4) Derive the expression vectors with respect to the ordered
variable vector to obtain Jacobian matrices df

dxy and dg
dxy

(using sympy.Matrix.jacobian).
5) Convert the Jacobian matrices to sparse to obtain non-

zero triplets (row, column, value), where row is
the index of the equation in the equation array, column
the variable index, and value the derivative expression.

The following performance characteristics are relevant. Sym-
bolic processing is executed over each model, and thus the
processing time scales linearly to the number of models. Each
model only has a few to tens of equations; thus, the processing
time is fast. The processing is done before loading any system
and is test-case independent.
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The symbolic processing for Shunt is illustrated in Equa-
tions (2) to (4). The Jacobian derivation and triplet conversion
shown in Equations (4) are automated with the symbolic library.

xy = [a, v] (2)

g = [v2g,−v2b] (3)

dg

dxy
=

[
0 2vg

0 −2vb

]
︸ ︷︷ ︸

dense

−→
[
(0, 1, 2vg)

(1, 1,−2vb)

]
︸ ︷︷ ︸

sparse (row, column, value)

(4)

Code generation generates and stores numerical functions that
are executable and will return the values of expressions. The code
generation feature of the external symbolic library is utilized in
the following steps:

1) Generate numerical functions for each initialization, dif-
ferential and algebraic equations, and each element in
Jacobian Matrices (using sympy.lambdify).

2) For each Jacobian matrix, store the equation index row,
variable index column, and the anonymous function for
value correspondingly in lists.

It is important to note that row and column are local to each
model and only depends on the number of declared variables.
The following remarks are relevant.

1) In terms of performance, the generated numerical func-
tions use the efficient NumPy library for vectorial compu-
tation and thus runs as fast as manually crafted code.

2) The overhead for symbolic processing and code gener-
ation can be eliminated by reusing the generated code
through efficient serialization and de-serialization.

3) The library also takes manually written numerical function
calls, as long as indices are provided and functions have
the same signature as the generated code. This feature can
be helpful to reuse existing numerical code.

At this point, executable numerical code is obtained from the
symbolically described DAE models.

G. Documentation

Code documentation is essential for disseminating open-
source research but is often underappreciated. The situation is
understandable because maintaining documentation can take as
much as, if not more than, the development efforts. All the
existing power system simulators rely on manual efforts to
document the implemented models.

The proposed library can automatically document the imple-
mented equations for DAE models developed using declarative
classes. Human-friend equations can be generated from sym-
bolic expressions by substituting in LATEX-formatted variable
strings. The documentation feature completes the symbolic layer
to ensure the same models are used for simulation and documen-
tation. To the best knowledge of the authors, the proposed library
is the first in power system tools capable of generating equation
documentation directly from source code. For interested read-
ers, the documentation is available online [25], and the model
documentation is under Section “Model References”.

TABLE I
MODELING ELEMENTS AND THEIR NUMERICAL ATTRIBUTES

Fig. 5. Data flow paths for setting up and the numerical storage.

IV. NUMERIC LAYER IMPLEMENTATION

The numeric layer establishes data structure for vector op-
erations, and dispatches generated numerical code for the pro-
cedures in numerical simulation, such as setting initial values,
updating equations, and building Jacobian matrices.

A. Data Structure and Vector Storage

The numeric layer relies on arrays and sparse matrices to
properly store data associated with declared elements. Numeri-
cal values belonging to a modeling element instance are stored
in the instance attributes. Depending on the type, an element
instance may contain member attributes for addresses, values,
and equations. Table I shows the supported attributes of the
element types. Each address, value, and equation value attributes
are stored as an array with its length equal to the number
of devices. For example, if a particular system contains three
Shunt devices, attributes b and g will each contain a value
array v with a length of three.

Numerical arrays are updated at different phases in simula-
tions, as outlined in Fig. 5. Parameter values are set after loading
the data file and converting it to per unit under the system base.
Variable addresses are allocated after loading the test system,
values set by initialization calls, and equation values updated by
equation calls. Service values are updated in multiple phases —
some are computed when accessed for the first time, and others
are computed after parameters are set. Discrete flags are updated
before or after equation updates, depending on the discrete type.

B. Variable Initialization

Variable initialization routine sets variable initial values be-
fore a routine starts. It includes setting the starting point for
power flow and initializing the rest of the variables for dynamic
routines. Although power flow initialization is simple, there
could be value conflicts depending on the input data format.
For example, default initial bus voltages are set by buses and
overwritten by PV-generators. The library uses an additional
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flag to indicate if the values from one model overwrite the shared
variables at the end.

Variable initialization for dynamics is mathematically a root-
finding problem for the DAE system with all derivatives zeroed
out. Two approaches can be used: sequential or iterative. Vari-
ables with an explicit solution can be initialized sequentially,
while those without must be solved iteratively.

The library provides three entry points for initialization. First,
an explicit-form equation can be specified for each variable if
it can be initialized sequentially. A common technique is to
set the initialization equation for a service that calculates from
other services. Second, an optional, implicit-form equation with
an initial value can be specified for each variable. All implicit
equations will be gathered and solved iteratively from the given
initial value. Third, a placeholder function is available if one
decides to write numerical code. For best practice, sequential ini-
tialization should be used whenever possible. For convergence
consideration, the initial values for the iterative initializers need
to be carefully selected.

C. Numerical Equation Evaluation

After loading a test case and counting the total number of
variables, four numerical arrays are created to hold all variables
and equations. Each variable in a model receives an array of
addresses indexing into the corresponding DAE array. The same
addresses can be used to access the corresponding numerical
values of variables and equations.

It is worth noting that the power system data structure in-
troduces external variables for one model to link to another.
As shown in Listing 1, the Shunt model creates two external
algebraic variables, a and v, for linking to Bus devices with
the indices given by bus. Variable addresses of the linked Bus
devices will be assigned to Shunt so that Shunt has access to the
Bus phase angles and voltages.

Memory copying of arrays imposes a significant overhead in
numerical simulation. As a solution, all internal variables are
assigned contiguous addresses so that a no-copy array view
can be stored locally in each model. External variables are
not guaranteed to link to contiguous devices, so their variables
and equations are stored in local arrays and merged into the
DAE arrays after evaluation. Although this implementation is
specific to NumPy, the general rule applies to avoid memory
copying, especially in computation-intense programs. However,
one needs to realize the downside of this approach — it rules out
the possibility of parallelizing equation updates across models.
Since parallel equation updates are difficult in Python due to
global interpreter lock (GIL), this shared-memory sequential
evaluation approach will give the best performance.

Steps to update equations for each model are as follows.
1) Copy external variables from DAE arrays to model.
2) Call generated numerical functions using local values as

inputs and store the outputs locally.
3) Update equation values for equation-dependent limiters

such as anti-windup limiters.
4) Merge local external equation values to DAE equations.

Fig. 6. Illustration of the equation update procedure (without Step 3).

This procedure (without step 3) is illustrated in Fig. 6. Note
that step 3 is needed for models with equation-dependent lim-
iters. Anti-windup limiters, for example, check the equation
values to update the limiter status. Step 3 updates limiter status
and sets the differential equation values to zero for the binding
anti-windup limiters.

D. Incremental Jacobian Building

Building Jacobian matrices involve steps to fill in sparse
Jacobian matrices incrementally and efficiently. It is especially
relevant for implicit numerical integration routine since Jacobian
updates take up the most overhead. This subsection discusses
how the Jacobian indexing is done with the local variable indices
(from the symbolic layer) and variable addresses (assigned in the
numeric layer).

It is worth noting the difference between the local variable
indices and the assigned variable addresses. A local variable
index is a scalar number based on the sequence of declaration
and is independent of test cases. Variable addresses are assigned
as arrays after loading a specific test case. Local indices are
used to look up corresponding addresses in order to determine
the positions of the values.

For a generic triplet (row, column, value(*args))
where row and columns are two scalars for the local indices,
and value(*args) is the numerical function for the Jacobian
value with args being a list of local values. Recall that value
is the derivative of the row-th equation with respect to the
column-th variable. Jacobian values, which have the same
length as the row and column addresses, should be summed
at the positions defined by the case-specific addresses for the
row-th equation and the col-th variables.

Fig. 7 illustrates the process with three Shunt devices as an
example. There are two Jacobian triplets from the symbolic layer
to be placed at local indices (0, 1) and (1, 1). In the numeric layer,
the zeroth variable a is assigned addresses [0, 1, 2] and the first
variable v is assigned addressee [5, 6, 7]. Evaluate the numerical
function 2vg to obtain the Jacobian elements, for example,
[0.002, 0.002, 0.002]. Next, these elements will be summed up
at positions with the row number equal to the addresses of a
([0, 1, 2]) and the column number equal to the address of v
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Fig. 7. Illustration of the Jacobian update procedure.

([5, 6, 7]). Repeat the process until all elements from all models
are added.

For performance consideration, the library implements a two-
step process that builds the sparsity pattern for one time and
then fills in the values repeatedly. It is known that incrementally
building sparse matrices can be time-consuming if repeated
memory allocation is needed. By using the addresses of ele-
ments, zero-filled sparsity pattern matrices can be constructed.
The memory for the non-zero elements is pre-allocated, and
in-place modifications can apply. This technique is especially
relevant for high-level languages without direct memory access.

V. CASE STUDIES

For verification and demonstration, this section presents a
model implementation, power flow calculation, time-domain
simulation, and eigenvalue analysis. The implementation of
turbine governor model TGOV1 is demonstrated with source
code developed in the proposed library. Next, power flow results
are reported with their time breakdown analyzed. Further, time-
domain simulation and eigenvalue analysis are verified against
DSATools 19.0.

All subsequent studies are performed in CPython 3.7.7 with
ANDES 1.0.3, SymPy 1.5.1, NumPy 1.18.4, and CVXOPT 1.2.5
on an AMD Ryzen 7 2700X CPU running Debian 10. In addition,
a custom C-based routine is used for fast in-place sparse matrix
addition.

A. Example Model: TGOV1

The TGOV1 turbine governor model [26] (shown in Fig. 8) is
used as a practical example with sufficient complexity to demon-
strate the proposed work. This model is composed of a lead-lag
transfer function and a first-order lag transfer function with an
anti-windup limiter. The corresponding differential equations
and algebraic equations are given in (5) and (6).[

ẋLG

ẋLL

]
=

[
zLG
i,lim (Pd − xLG) /T1

(xLG − xLL) /T3

]
(5)

Fig. 8. The control diagram of TGOV1 turbine governor.

Listing 4: Implementation of the TGOV1 Model.

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1− ω)− ωd

R× τm0 − Pref

(Pref + ωd) /R− Pd

Dtωd + yLL − POUT
T2

T3
(xLG − xLL) + xLL − yLL

u (POUT − τm0)

⎤
⎥⎥⎥⎥⎥⎥⎦ (6)

where LG and LL denote the lag block and the lead-lag block,
ẋLG and ẋLL are the internal states, yLL is the lead-lag output,ω
the generator speed, ωd the generator under-speed, Pd the droop
output, τm0 the steady-state torque input, and POUT the turbine
output that will be summed at the generator.

An implementation of the TGOV1 model using descriptive
equations is given in Listing 4. It consists of four types of dec-
larations: parameters, external variables, initial external values,
and internal variables and equations. Parameters are declared
with special properties for data consistency and per-unit conver-
sion. For example, Line 4 specifies that the droop parameter R
must be non-zero and is an inverse-of-power per-unit quantity in
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Listing 5: Block implementation of the three transfer functions in TGOV1.

TABLE II
TIME BREAKDOWN (IN SECONDS) FOR MATPOWER TEST CASES

device base MVA. External variableω is retrieved for calculation
and τm for power feedback to generators. Note that the equation
associated with τm replaces the steady-state constant torque
τm0 with the turbine output POUT . The initial value of the
mechanical torque is retrieved for variable initialization. Finally,
differential and algebraic variables are declared, followed by
the mathematical equations in (5)–(6) written in a descriptive
format, making it convenient to understand and troubleshoot.

Alternatively, modeling blocks can be used to model part of
TGOV1 directly from the transfer function diagram. That is,
lines 21–32 in Listing 4 can be simplified into Listing 5, which
is highly readable and similar to using a visual modeling tool in a
scripting manner. Note that variable pd have been replaced with
GA_y in Listing 5, but the rest remain the same. Modeling users
can readily utilize blocks such as Gain, LagAntiWindup
and LeadLag without having to reimplement the underlying
standard equations.

B. Power Flow Calculation

ANDES implements a Newton-Raphson method for power
flow calculation as the first proof of concept. Models for bus,
PQ, PV, transmission line, and shunt are developed, and a full
Newton-Raphson routine is implemented using the direct sparse
linear solver KLU.3 Unlike conventional power flow packages,
the symbolically implemented line model does not implement an
admittance matrix, although it is feasible to do so numerically.
Instead, vector computation of line injections into buses are used
to maintain generality across models.

The power flow routine is benchmarked using test systems
from MATPOWER 7.0. With the same settings and start points,
ANDES is able to solve the cases listed in Table II and obtain
identical results to that from MATPOWER. Note that the actual
ANDES computation time is about 10% shorter than these
reported in the table since the profiler was turned on to obtain
the time breakdown.

3KLU is not shipped with CVXOPT but is available through an add-on
package cvxoptklu (compilation required).

Fig. 9. The speed of generators on Buses 1 and 3.

Fig. 10. Terminal voltages on Buses 1 and 3.

The time breakdown exposes some interesting facts. Updating
the numerical equations and solving the linear equations is
relatively fast and takes up less than 30% of the time. About
half of the time is consumed for filling in Jacobian elements,
even though an efficient C-based routine is used to modify
values in place. The Jacobian time, however, can be reduced
by implementing a dishonest algorithm that avoids updating
Jacobians at every iteration step.

C. Time-Domain Numerical Integration

To validate the numerical simulation results, ANDES is com-
pared with the commercial package DSATools TSAT using
Kundur’s two area system, IEEE 14-bus system and Northeast
Power Coordinating Council (NPCC) 140-bus system. All PQ
loads are converted to constant impedance after power flow
calculation. The implicit trapezoidal method is used with a fixed
step size of 1/30 second.

The Kundur’s system has four generators [27] in GENROU
models [28], each with an EXDC2 exciter and a TGOV1 turbine
governor. Parameters of the system are listed in the Appendix. At
t = 2s, one of the two lines between Bus 8 and Bus 9 is discon-
nected. The simulation takes 1.2 seconds to complete. Generator
speed, terminal voltage, and excitation voltage following a line
trip event are compared. Simulation results are depicted in
Fig. 9– Fig. 11. Clearly, the proposed hybrid symbolic-numeric
library achieves almost the same time-domain simulation results.
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Fig. 11. Excitation voltages of generators on Buses 1 and 3.

Fig. 12. IEEE 14-bus system rotor speed comparison.

Fig. 13. IEEE 14-bus system voltage comparison.

The modified IEEE 14-bus system for validation uses a va-
riety of models implemented in the hybrid symbolic-numeric
framework. These models include generator model GENROU,
exciter models ESST3A and EXST1, turbine governor models
TGOV1 and IEEEG1, and PSS models ST2CUT and IEEEST.
An extreme scenario that opens line 1-2 at 1 second and re-
connects it after 2 seconds is used to trigger nonlinearity. The
simulation takes 4.1 seconds to complete. Generator rotor speeds
and terminal voltages in Fig. 12 and Fig. 13 show perfect matches

Fig. 14. NPCC 140-bus system rotor speed comparison.

Fig. 15. NPCC 140-bus system voltage comparison.

with TSAT. The successful validation of ANDES using this
system confirms the correct implementation of all the above
models using the proposed framework.

The NPCC 140-bus system (with generator models GENCLS
and GENROU, exciter models IEEEX1 and turbine governor
models TGOV1) is studied. The simulation takes 2.5 seconds
to complete. The rotor speed and voltage plots in Fig. 14 and
Fig. 15 also show perfect match.

It is also important to note that even commercial software does
not always agree with each other, especially in large systems,
due to factors such as unpublished implementation details and
automatic parameter corrections. Nevertheless, the discussed
verification provides satisfactory results to prove the proposed
concept using the above three test systems.

D. Eigenvalue Analysis

Lastly, the numerical routine for eigenvalue analysis is devel-
oped by reusing existing eigenvalue programs. Eigenvalues of
the state matrix obtained after the time-domain initialization are
plotted in Fig. 16. Two dotted lines in the figure are the loci with
5% damping. Also, the first three eigenvalues ranked by damping
ratio (ζ) are compared between ANDES and DSATools SSAT in
Table III. The comparison shows that the numerical eigenvalue
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Fig. 16. Relevant eigenvalues in the S-domain for Kundur’s system.

TABLE III
EIGENVALUE RESULTS COMPARISON FOR KUNDUR’S SYSTEM

analysis routine in ANDES can obtain very close results to the
commercial software SSAT.

VI. CONCLUSION

In conclusion, this paper presents a hybrid symbolic-numeric
library for DAE-based power system modeling and numerical
simulation. This paper presented the design philosophy for a
two-layer library that brings together the advantages of sym-
bolic and numeric approaches. The symbolic layer is case-
independent and handles descriptive modeling, symbolic pro-
cessing, code generation, and automated documentation. The
numeric layer organizes the generated code for case-dependent
initialization, equation update, and Jacobian update. The sim-
plicity of modeling using the proposed library is demonstrated
with a TGOV1 turbine governor model. The library is verified
for power flow calculation against MATPOWER, and the com-
putation time is analyzed. It is also verified for time-domain
simulation using Kundur’s system, IEEE 14-bus system, and
NPCC system with a variety of dynamic models. The reference
implementation in the ANDES library can obtain very close
results for time-domain simulation and eigenvalue analysis to
DSATools.

APPENDIX

MODEL PARAMETERS FOR KUNDUR’S

TWO AREA SYSTEM

TABLE IV
BUS DATA

TABLE V
LINE DATA

TABLE VI
PQ DATA

TABLE VII
PV DATA

TABLE VIII
SLACK DATA
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TABLE IX
GENROU DATA

TABLE X
EXDC2 DATA

TABLE XI
TGOV1 DATA
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