
4872 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021

Effective Parallelism for Equation and Jacobian Evaluation
in Large-Scale Power Flow Calculation

Hantao Cui , Senior Member, IEEE, Fangxing Li , Fellow, IEEE, and Xin Fang , Senior Member, IEEE

Abstract—This letter investigates parallelism approaches for
equation and Jacobian evaluations in large-scale power flow cal-
culation. Two levels of parallelism are proposed and analyzed:
inter-model parallelism, which evaluates models in parallel, and
intra-model parallelism, which evaluates calculations within each
model in parallel. Parallelism techniques such as multi-threading
and single instruction multiple data (SIMD) vectorization are dis-
cussed, implemented, and benchmarked as six calculation work-
flows. Case studies on the 70 000-bus synthetic grid show that
equation evaluations can be accelerated by ten times, and the
overall Newton power flow advances the state of the art by 20%.

Index Terms—Power flow calculation, parallelism, multi-
threading, single instruction multiple data (SIMD).

I. INTRODUCTION

POWER flow calculation is a fundamental routine widely
used for power system analysis and operation. In power

systems with a large contingency set and various renewable
scenarios, the calculation speed of power flow is crucial to ensure
system security. Recent CPUs have stalled on clock rate and
started to pack more cores and provide sophisticated instruction
sets. Therefore, power flow workflows need to be fine-tuned to
utilize new computing hardware.

Power flow calculation consists of four sequential tasks: (1)
updating equation residuals, (2) updating Jacobian elements,
(3) solving sparse linear equations, and (4) updating variable
values and checking for convergence. Generally, task (4) is
light-weight, and task (3) is handled by highly efficient external
solvers [1], such as KLU on CPU or CuSparse on GPU [2], [3].
We investigate the parallelization within tasks (1) and (2).

Available parallel computing techniques include instruction-
level, data, and task parallelism. Instruction-level parallelism
utilizes dedicated instructions available on the platform. Data
parallelism distributes the same computing task on large data
sets across multiple processors. Task parallelism dispatches each

Manuscript received November 22, 2020; revised March 12, 2021 and April
10, 2021; accepted April 11, 2021. Date of publication April 15, 2021; date
of current version August 19, 2021. This work was supported primarily by
the Engineering Research Center Program of the National Science Foundation
(NSF) and the Department of Energy under NSF Award Number EEC-1041877
and the CURENT Industry Partnership Program. Paper no. PESL-00332-2020.
(Corresponding author: Fangxing Li.)

Hantao Cui and Fangxing Li are with the Department of Electrical Engineering
and Computer Science, The University of Tennessee, Knoxville, TN 37996 USA
(e-mail: hcui7@utk.edu; fli6@utk.edu).

Xin Fang was with the Department of EECS, The University of Ten-
nessee and CURENT research center, Knoxville, TN 37996 USA (e-mail:
allen.fangxin@gmail.com).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TPWRS.2021.3073591.

Digital Object Identifier 10.1109/TPWRS.2021.3073591

processor core, using multi-processing or multi-threading, for
one computing task on the same or different data. Given the size
of power flow problems, instruction-level and task parallelism
are more relevant.

Related work has explored instruction-level parallelism using
Single Instruction Multiple Data (SIMD) vectorization for Task
(3), namely, factorizing sparse matrices and solving sparse linear
equations, on GPU [4], [5]. CPU multi-processing is reported
in [6], [7] for power flow, both using OpenMP for message pass-
ing. A CPU-GPU architecture is proposed in [8] that combines
GPU SIMD with multi-processing for power flow runs of many
instances of the same power network. To our best knowledge,
this letter is the first to quantify the effectiveness of SIMD
and multi-threading for parallelizing the equation and Jacobian
evaluations on modern CPUs.

In most existing tools, such as PSAT [9] and ANDES [10],
the numerical equations and Jacobian elements are obtained
by calling power flow models in serial, which is partially due
to the limited parallelism supports in MATLAB and Python.
In modern programming environments, power flow routines
with instruction-level and task parallelism can be prototyped
to provide directions for improving existing tools.

This work studies the parallelism for the equation and Ja-
cobian evaluation tasks in power flow calculation. Since these
two tasks share the same type of computing demand, namely,
arithmetic evaluation of equations for residuals and Jacobian
elements, the parallel procedures are the same. The main contri-
butions are: 1) The concepts of inter- and intra-model parallelism
are proposed. Implementation, advantages and limitations are
discussed. 2) Six workflows, as the combinations of two inter-
model and three intra-model workflows, are benchmarked using
large-scale synthetic grids with up to 70 000 buses [11].

An an outcome, the Newton power flow package that imple-
ments the most effective parallelism is over 20% faster than the
state-of-the-art for large-scale systems, as will be discussed in
Section IV.

II. POWER FLOW MODELS AND WORKFLOWS

A. Power Flow Formulation and Models

This work employs an extended power flow formulation that
models the voltage control of PV generators and the voltage
and phase angle controls of the slack generator. In addition
the bus voltages and phase angles solved from the traditional
formulation, this formulation allows checking reactive power
limits in iterations, and same formulation can be used before
and after a PV generator switches to a PQ load. The formulation

0885-8950 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 27,2021 at 16:18:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4259-5925
https://orcid.org/0000-0003-1060-7618
https://orcid.org/0000-0002-7979-803X
mailto:hcui7@utk.edu
mailto:fli6@utk.edu
mailto:allen.fangxin@gmail.com
https://doi.org/10.1109/TPWRS.2021.3073591

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021 4873

Fig. 1. Detailed view of inter-model parallelism for equations evaluations.

is given by the compact notation that

g(y) = 0 , (1)

where algebraic equations g in (2) are organized by grouping
active power mismatches, reactive power mismatches, voltage
control errors, and angle control error in order. Variables y in (3)
are grouped by bus voltage angles, bus voltage magnitude, PV
reactive power outputs, and Slack active power output in order.

g(y) =
[
gp, gq, gV , gθ

]T
, (2)

y =
[
θ,V ,Qg, Ps

]T
. (3)

This formulation can be extended, for example, to include
control modes of converters in power flow. We also note that
this formulation has more equations and variables than the
well-known one. Like most power flow programs, this work
considers models including bus, PQ load, PV generator, slack
generator, lines (including the π-model transmission line and
two-winding transformer) and shunt capacitor. In particular, line
injections are calculated on a per-line basis and summed at the
connected buses. Since the power injections at each terminal are
calculated independently, parallelization can be possible, as will
be discussed in the following.

B. Parallel Workflows: Inter-Model and
Intra-Model Parallelism

Two levels of parallelism are proposed for tasks (1) and (2).
The first level is the inter-model parallelism, which aims to
evaluate the equations and Jacobian elements of multiple models
in parallel. A high-level view of inter-model parallelism is shown
in Fig. 2(b), where each solid dot represents a model. A detailed
view of the parallel part is shown in Fig. 1, where PQ, Shunt, and
other models compute their power injection equations in parallel.
Results from the parallel evaluations need to be joined as the
whole system. For example, injections from lines, loads, and
generators on the same bus will be joined through summation.

The inter-model parallelism is a coarse-grained approach
typically assigns one processor core for each function of each
model. However, this workflow has a limitation relevant for
power flow: all jobs must have been completed before results can
be joined. This limitation is known as Cannikin’s Law, which
suggests that, although threads run in parallel, the total time is
bottlenecked by the slowest thread. For large systems, the line
model is the slowest due to the instance number and calculation
complexity.

The second level is the intra-model parallelism, a fine-grained
approach that parallelizes independent calculations within mod-
els. Consider the active power injections at transmission
line terminals:

Ph = v2h(gL + gL,h)− vhvk(gLcosθhk + bLsinθhk)

Pk = v2k(gL + gL,k)− vhvk(gLcosθhk − bLsinθhk) , (4)

where vh and vk are the bus voltages at terminalsh andk, and θhk
is the voltage angle difference, gL and bL are the conductance
and susceptance of the series component, and gL,h and gL,k

are the conductance of the shunt-component. The intra-model
parallelism aims to compute Ph and Pk in parallel due to
independence. Two approaches are available for implementing
intra-model parallelism: task parallelism or SIMD vectorization,
which will be discussed in Section II-D. Intra-model parallelism
can efficiently utilize processors since independent calculations
of the same model usually have similar complexity, as arePh and
Pk in (4). However, intra-model parallelism is more difficult to
implement, as one needs to carefully eliminate data racing within
each model.

Further, one can create nested parallelism by combining the
inter-model and intra-model parallelism to assign one core for
each model and assign one core (or uses SIMD) for each
equation-level calculation. At first glance, the idea may be ap-
pealing, given that all equation-level computations are executed
in parallel. However, if task parallelism is used for both inter-
and intra-model parallelism, processor resources may run out
quickly.

C. Task Parallelism: Multi-Processing or Multi-Threading

As mentioned, task parallelism can be implemented with
multi-processing or multi-threading to utilize multiple cores.
By design, a process is a program in execution composed of
code, current activity, data, heap, and stack. Processes can only
share resources through techniques such as message passing
or shared memory, which require explicit arrangements by
the programmer [12]. Therefore, Multi-processing is ideal for
computations where data exchanges between individual runs
are not required, such as contingency screening and stochastic
time-domain simulation [13].

A thread is a basic unit of CPU utilization within a process.
By default, a thread shares the resources (such as code and
data) of the process to which it belongs. Empirically, threads
consume significantly less time to create and manage [12]. Such
characteristics make multi-threading suitable for parallelizing
equations and Jacobian update functions, which need to be
called multiple times and require the passing of inputs (from
the previous iteration) and outputs.

D. Single Instruction Multiple Data (SIMD) Vectorization

SIMD is a mechanism that vectorizes arithmetic operations
at the processor level. This vectorization is completely dif-
ferent from MATLAB’s vectorization, which expresses loop
operations using vectors. For example, on Intel processors that
supports AVX512, the 512-bit Advanced Vector Extension in-
structions, programs can pack 32 double-precision floating point
calculations per clock cycle. To compute a power system with
32 000 line devices, for example, each equation in (4) only needs
1000 evaluations with AVX512.

However, SIMD is not automatic and requires meticulous
implementation. Specifically, the following requirements must
be satisfied: 1) Use vectors to store numericals in contiguous
memory. 2) Eliminate bound checking when accessing vectors.
3) Use proper directives to suggest SIMD to the compiler.
4) Inspect the generated machine code to verify vectorizations.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 27,2021 at 16:18:21 UTC from IEEE Xplore. Restrictions apply.

4874 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021

Fig. 2. Power flow workflows. (Solid dots) Aggregation of all equation/Jacobian evaluations in a model. (Circles) Each equation or Jacobian element evaluation.

TABLE I
COMPUTATION TIME FOR LINE EQUATIONS WITH AND WITHOUT SIMD

Although SIMD is intricate to implement, the speedup is
huge compared with scalar calculations, as will be shown in
Section IV.

III. VALID IMPLEMENTATION AND BENCHMARK

To utilize multi-core processors, the power flow program must
be implemented in a language that (1) compiles into bare-metal
machine code (as opposed to virtual machine byte-code), and
(2) is capable of dispatching multiple cores. Unfortunately, none
of the two popular languages for scientific computing, namely,
MATLAB and Python, meets the requirement. Due to the
global interpreter lock (GIL), Python threads are executed one
after another, defeating the purpose of simultaneous multi-
threading. Python’s multiprocessing does allow side-stepping
GIL to achieve process-based parallelism. However, as dis-
cussed, processes are computationally costly to start and require
careful arrangements by the programmer for data sharing. MAT-
LAB provides a multi-processing-based parallel for-loop (par-
for) solution, which occurs only if the parfor-loops are compiled
into MEX functions using an OpenMP-compliant compiler. The
restriction renders MATLAB unfriendly to structure parallel
programs.

This work implements the multi-threaded workflows in the
Julia language [14], which is high-level, just-in-time compiled,
and multi-threaded. Julia’s high-level syntax allows quick proto-
typing of the power flow models and equations. Under the hood,
Julia uses the Low-Level Virtual Machine (LLVM) compiler
to translate the code into platform-specific, highly optimized
machine code. Most importantly, Julia can readily dispatch
processor cores for multi-threading.

Run-time memory allocation is another factor that invalidates
multi-threading efforts. One of the core challenges in high-
performance computing is to minimize memory access time.
Run-time allocations will incur access time and trigger garbage
collection, which is another performance deal-breaker. In this
work, equation calls are allocation-free, and Jacobian calls only
allocate while assembling triplets into sparse matrices.

IV. CASE STUDIES

A. Test Systems and Environments

The effectiveness of parallelism is best validated using large
test systems on recent-generation hardware. The study uti-
lizes the Synthetic 70 000-bus system, which contains 88 207

TABLE II
DESCRIPTIONS OF THE SIX PROPOSED WORKFLOWS

branches and transformers, 160 780 variables, and 998 495
non-zero Jacobian elements. Simulations are performed on a
workstation with the six-core Intel Xeon W-2133 and 32 GiB
of memory running Ubuntu 16.04, Julia 1.5.2, Python 3.8.5,
NumPy 1.19.1, and MATLAB 2020a. Computation time is
measured using the Newton power flow.

B. The Effectiveness of SIMD Vectorization

SIMD is first evaluated for effectiveness by comparing im-
plementations in Julia, Python, and MATLAB. The times to
calculate the four equations of Line (active and reactive power
injections at two terminals) are reported. SIMD is verified in
the generated assembly code with instructions such as vaddpd
and vmulpd, where v is vectorized, add and mul are addition
and multiplication, and pd indicates packed data (as opposed to
scalar data sd).

As reported in Table I, turning on SIMD for the same Julia
code makes the computation is an order of magnitude faster.
MATLAB records satisfactory performance compared with the
SIMD version in Julia, because MATLAB utilizes SIMD under
the hood for array operations. On the other hand, NumPy is
relatively slow due to its limited SIMD support, which is an
ongoing work.

C. Parallel Workflow Comparisons

The combination of two inter-model execution modes (serial
or multi-threaded) and three intra-model execution modes (se-
rial, multi-threaded, or SIMD) yields six possible workflows.
Table II describes the six workflows, where Workflow (1) is
serial and the other five involve parallelism. All the workflows
are implemented in Julia with the same codebase, ruling out per-
formance discrepancies of programming languages. The compu-
tation times are reported in Table III, where the circled number
is the workflow number, and each cell contains the equation
time and Jacobian time separated by a slash. The observations
are: (a) The traditional serial workflow (1) is the slowest, and
(2) the inter-model multi-threading alone has limited effect.
(b) Workflow (3) - multi-threading within models - speeds up by
5x, but nested parallelism (4) is as slow as the serial workflow.
(c) Workflow (5) - SIMD within each model with serial model

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 27,2021 at 16:18:21 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 5, SEPTEMBER 2021 4875

TABLE III
EQUATION / JACOBIAN TIME (MS) FOR SIX WORKFLOWS

TABLE IV
EQUATION TIME (µs) BY MODEL IN THREE INTRA-MODEL WORKFLOWS

TABLE V
SYNTHETIC GRID COMPUTATION TIME IN MILLISECONDS

executions - has a 10x speedup. Workflow (6) with inter-model
multi-threading brings slight improvements to workflow (5).

To explain why coarse-grained inter-model multi-threading
has limited effects, such as in workflow (2) and (6), we break
down the equation computation time by power flow model. As
explained in Section II-B, the total CPU time of a multi-threaded
parallel program is determined by the bottleneck, which is the
Line model in power flow. This can be verified in Table IV that
workflows (2)’s and (6)’s time is roughly equal to the time for
Line equations. Therefore inter-model parallelism is ineffective
due to the slow execution of the Line model.

Also, the nested parallelism in workflow (4) has an adverse
effect compared with workflow (2) due to thread limits. The pro-
cessor ends up executing one model in each thread and serially
run threads within each model, which is similar to workflow (2).
Even worse, workflow (4) has more overhead than (2) due to the
creation and termination of threads, making it slower than the
less-optimized workflow (2).

Therefore, workflow (5) is recommended considering the
implementation complexity and effectiveness. Compared with
workflow (6), workflow (5) is almost as fast and is single-
threaded, which is far more maintainable. Multiple power flow
calculation jobs can run in parallel processes efficiently, as
single-threaded jobs will not incur thread switching overhead.

Finally, Table V compares workflow (5) with workflow (1) and
the state-of-the-art MATPOWER package [15] to solve Newton
power flow for four synthetic systems. MATPOWER’s time is
the average of five consecutive runs starting from the second run
(to allow for data caching and pre-compilation). Since this work
accelerates the equation and Jacobian evaluations, the linear
equation solver time is the same for workflows (1) and (5).
Still, workflow (5) is 8.8% faster for the 2000-bus system and
5.3% faster for the 70k-bus system. Workflow (5) has similar

performance to MATLAB for the 10k-bus and the 25k-bus
systems, due to MATPOWER’s faster linear equation solver but
slower equation and Jacobian routines. For large systems, equa-
tion and Jacobian time become more influential; the proposed
workflow (5) thus outperforms MATPOWER by 20.1%.

V. CONCLUSION

This letter identifies the most effective parallel workflow
for power flow calculation by investigates six workflows us-
ing multi-threading and SIMD and vectorization. The con-
cepts of inter-model and intra-model parallelism are proposed.
Benchmarks using the Synthetic 70k-bus system shows that (1)
coarse-grained inter-model parallelism is ineffective because it
cannot eliminate the Line model computation bottleneck, and
(2) serially executed models with SIMD is the most effective
approach owning to its 10x speed up and single-threadedness,
which avoids threading overhead.

Future work involves benchmarking the proposed parallelism
workflows with the Fast Decoupled method on heterogeneous
computing devices, including CPUs and GPUs.

REFERENCES

[1] F. Milano, “A python-based software tool for power system analysis,” in
Proc. IEEE Power Energy Soc. Gen. Meeting, 2013, pp. 1–5.

[2] G. Zhou, R. Bo, L. Chien, X. Zhang, S. Yang, and D. Su, “Gpu-accelerated
algorithm for online probabilistic power flow,” IEEE Trans. Power Syst.,
vol. 33, no. 1, pp. 1132–1135, Jan. 2018.

[3] X. Li, F. Li, H. Yuan, H. Cui, and Q. Hu, “GPU-based fast decoupled power
flow with preconditioned iterative solver and inexact newton method,”
IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2695–2703, Jul. 2017.

[4] V. Jalili-Marandi and V. Dinavahi, “SIMD-based large-scale transient
stability simulation on the graphics processing unit,” IEEE Trans. Power
Syst., vol. 25, no. 3, pp. 1589–1599, Aug. 2010.

[5] C. Vilachá, J. C. Moreira, E. Míguez, and A. F. Otero, “Massive Jacobi
power flow based on SIMD-processor,” in Proc. 10th Int. Conf. Environ.
Elect. Eng., May 2011, pp. 1–4.

[6] I. Dzafic and H. Neisius, “Real-time power flow algorithm for shared
memory multiprocessors for European distribution network types,” in
Proc. Conf. Proc. IPEC, Oct. 2010, pp. 152–158.

[7] A. Ahmadi, S. Jin, M. C. Smith, E. R. Collins, and A. Goudarzi, “Parallel
power flow based on OpenMP,” in Proc. North Amer. Power Symp.,
Sep. 2018, pp. 1–6.

[8] V. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics
processing units for concurrent evaluation of many networks,” IEEE Trans.
Smart Grid, vol. 8, no. 4, pp. 1639–1648, Jul. 2017.

[9] F. Milano, “An open source power system analysis toolbox,” IEEE Trans.
Power Syst., vol. 20, no. 3, pp. 1199–1206, Aug. 2005.

[10] H. Cui, F. Li, and K. Tomsovic, “Hybrid symbolic-numeric framework for
power system modeling and analysis,” IEEE Trans. Power Syst., vol. 36,
no. 2, pp. 1373–1384, Mar. 2021.

[11] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye,
“Grid structural characteristics as validation criteria for synthetic net-
works,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3258–3265, Jul. 2017.

[12] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken, NJ, USA: Wiley, 2012.

[13] F. Milano and R. Zárate-Miñano, “A systematic method to model power
systems as stochastic differential algebraic equations,” IEEE Trans. Power
Syst., vol. 28, no. 4, pp. 4537–4544, Nov. 2013.

[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017.

[15] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower:
Steady-state operations, planning, and analysis tools for power systems
research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19,
Feb. 2011.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 27,2021 at 16:18:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

