
Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide

license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide

public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

 A Communication Testbed for Testing Power

Electronic Agent Systems

Abstract—Power electronic systems (PES) incorporate complex

intra-system communication, which are of vital importance for

the successful operation of these systems. This paper proposes

and outlines a communication testbed that will help in the

development and testing of the communications between the

components of PES. It allows for the comparison and evaluation

of different communication methods, such as MQTT, Modbus, or

User Datagram Protocol (UDP), and for the characterization of

how these communication protocols perform.

Index Terms— power electronic systems, communications, UDP,

MQTT, Modbus

I. INTRODUCTION

The electric power grid is transitioning to an electric
network consisting of power electronic systems (PES),
communication systems, and intelligent devices. By 2030, the
prediction is that 80% of the power generated will flow through
PES [1]. As PES continue to see rapid adoption, the complex
nature of system interactions and couplings will continue to
grow. New systems for interconnecting energy sources, energy
storage, and loads are in rapid development and deployment. In
adopting these technologies effectively, communication and
control approaches will be paramount.

When developing communication for PES, both the
communication protocol and schema affect the operation of the
system. The schema defines how the data is interpreted and
translated in the communication protocol. Examples of
communication protocols include Message Queuing Telemetry
Transport (MQTT), Modbus, and UDP. When developing PES,
the latency, error rate, and message rate of the communication
protocol and schema are important for the development of the
PES control. Therefore, quantifying these characteristics is
important before hardware testing is done. In Fig. 1, a design
tree is proposed showing the development from concept to
system prototype by including an additional layer of
development and testing of the communication network before
Hardware-in-the-loop (HIL) integration, therefore allowing for
the communication characteristics to be incorporated into the
system control.

In this work, a testbed for communication networks within
a modular power electronic system of distributed controllers is
discussed. This testbed provides an opportunity to develop and
implement new communication and control strategies while

also evaluating the security, latency, and reliability of the
solution.

The testbed is used to evaluate the communication between a
computational node and a digital signal processor (DSP). PES
utilize multiple computational nodes that communicate with
one another and perform various tasks in a system in a
decentralized manner. These tasks include interfacing with the
outside world, interfacing with DSPs that control power
converters, and running system optimization. This testbed
provides an environment to test and implement the
communication schemes of these systems. Latency, message
rate, and error rate can quickly be determined, and PES control
can be adjusted to fully utilized the communication capability
available.

Fig. 2 shows a typical configuration of an agent-based
power electronics system. These different sub-systems work
independently to accomplish an overall goal, such as economic
gain, or grid stability. Agent-based systems provide
expandability and versatility in deployment and operation and
have been shown to support power electronic system
integration [2]-[3]. Each integrated component can be
controlled by an agent and provide it with specific intelligence
and decision making. Agents in these systems must
demonstrate the ability to be reactive, proactive, and social.
Agents need to perceive local conditions and react accordingly,

Fig. 1. Process flow in the development of power electronic system.

Benjamin Dean1, Michael Starke2, Mitchell Smith2, Madhu Chinthavli2, Leon Tolbert1

University of Tennessee, Knoxville, TN, USA

Oak Ridge National Laboratory, Oak Ridge, TN 37831
{bdean7, tolbert}@utk.edu, {starkemr, smithmt, chinthavalim}@ornl.gov

http://energy.gov/downloads/doe-public-access-plan

initialize and exhibit goal-directed behavior, and interact with
other agents or external entities [4].

The blue arrows represent the agent communication.
Message-bus communication can take place over protocols
such as MQTT, VOLTTRON, or OpenFMB. The black arrows
represent the agent to component communication. This can also
happen over a variety of protocols, such as Modbus TCP,
Modbus RTU, or UDP.

II. AGENT BASED SYSTEMS

Various agent-based systems with different communication
implementations have been presented in literature. These
systems were reviewed to help determine the communication
protocol and configuration this testbed should be capable of
testing. In [2]-[3], agent systems were developed to link power
electronic converters (PEC) and resources into a single system
available for dispatch by a central coordinator. The agent
systems turned single requests into actionable functions
between different systems and lead to fully coordinated
systems. Even negotiation techniques have been investigated
with this type of schema [5]. This can be further complicated
with a hierarchy of system needs to support the electric grid as
presented in [6]. Here the work proposes interconnection of
utility distribution energy management system (DeMS) to
power electronic systems through OpenADR and a home
energy management system. Hence, the driving features
required of the power electronic system will create the
necessary communications framework, protocol, and schema
for the communication network.

In previous work, a plug-and-play framework solution was
developed for conversion stages in a PES. This allows control
and data to be transferred from a digital signal processing (DSP)
controller to a central controller regardless of the converter type
or design [5]. In Fig. 2, the communication between a DSP and

a middle layer (computer node or Raspberry Pi) is presented.
Communication between the computer node and DSP is
achieved using a standardized implementation of UDP. The
communication data includes specification, available control
modes, and converter ratings to support auto-configurability
[5].

Within the computer node lies an agent framework, a locally
hosted broker (message bus) on a single computational node is
used by the agents for MQTT communication. The framework
utilizes 4 unique agents: 1) the Source/Load agent that
communicates and interacts with interconnected sources or
loads, 2) the Converter agent which communicate to the
converter DSP through UDP, 3) the Intelligence agent which
determines the commands that will be dispatched to the
converter and source/load and 4) the Interface agent which is
used to link the computational node to a central controller. In
this architecture, the computer node also communicates via
MQTT to the central controller but can support other protocols.

III. COMMUNICATIONS TESTBED

A. Overview

For evaluating different functionalities and communication
protocols, a communication testbed must be able to emulate the
schema and protocol of the different PES components and
evaluate the performance of the communications. This provides
a rapid means to test various case scenarios, debug setup
challenges with communication configurations, and establish
communication baselines for comparison. For effective results,
the network configuration must be the same as the PES network
implementation. Therefore, the testbed utilizes two separate
networks for the PES communications emulation, and one for
the central computer to interact with the Raspberry Pi’s. The
code deployed is in the form of agents in a Raspberry Pi
network, with different protocols able to be used as the DSP to
computer node communications and MQTT for the
communications between computer nodes and central
computer. Custom schemas for the DSP to computer node and
MQTT communications can be defined, deployed, and tested
using the developed graphical user interface (GUI) .

Fig. 2. Basic Agent-based communication implementation of a PES.

Some or all these example agents could be incorporated

Fig. 3. Example integration with real hardware [8]

As presented, three sets of two Raspberry Pi 3B models are
used to test the computational node to DSP communication,
with one set of Raspberry Pi’s representing interconnected
DSPs and the other the computer nodes. This communication
link is an isolated ethernet layer to provide direct link between
the computer node and DSP simulator. The computational
nodes (Raspberry Pi’s A/B/C) share an ethernet switch for
intercommunication with MQTT. An Arduino Uno is
interfaced with the general-purpose input/output (GPIO) pins of
the Raspberry Pi’s. This allows for timing experiments, such as
latency testing, without requiring Raspberry Pi clock
synchronization. The following is a list of the hardware used in
the testbed, pictured in Fig. 4:

• Raspberry Pi 3B (3) – Computer nodes

• Raspberry Pi 3B (3) – DSP Simulator nodes

• Arduino Uno

• Network Switch (2)

• MacBook Pro running Ubuntu 16.04 (Code

Deployment)

• MacBook Pro running Ubuntu 16.04 (Central

Computer)

Since the Raspberry Pi’s utilize more than a single ethernet
connection, USB to ethernet adapters were employed to support
additional communication layers as shown in Fig. 6. The
Raspberry Pi automatically adopts an eth0, eth1, and eth2
naming convention for communication ports allowing for rapid
adoption and evaluation of the communication port. In this
case, eth0 is used for the UDP communications, eth1 for the
communication network to support automatic deployment of
code across the network for testing, and eth2 for MQTT
communications between computer node and central computer.

B. Communication Networks

The setup of the testbed uses a Code Deployment Computer
(CDC) running Ubuntu 16.04 that is connected to all the
Raspberry Pi’s. This network is used for detecting and auto-
deploying code to the Raspberry Pi’s. Each node on this
network has a static IP address defined with the form
192.168.0.X (eth1). The netmask is 255.255.255.0, which
limits the communication network addresses 192.168.0.0 –
192.168.0.255. The communication for eth0 is always set to
192.168.53.X for the computer nodes and the DSP simulators
(as the communication link is isolated). The MQTT
communication network is preconfigured as well with
192.168.99.X and netmask 255.255.255.0.

The code deploy network allows the following tasks to be

facilitated without interfering with the communication

network.

• Detecting connected Raspberry Pi’s through

pinging

• Transferring scripts to Raspberry Pi’s through a

network file system (NFS)

• Executing Python scripts on the Raspberry Pi’s

through secure shell (SSH) commands

• Remote access setup for troubleshooting through

Virtual Network Computing (VNC)

By implementing the communication networks with the

same configuration as physical PES to test the system

behavior, the communication behavior can be determined in

different real-world situations, including cyber-attacks. MQTT

supports secure socket layer (SSL) encryption for secure

communication, and the testbed can be configured to

incorporate this into its implementation. This allows cyber-

attacks to be emulated, and the resiliency of the

communications to these attacks can be determined.

C. Evaluation techniques for establishing quaility of

communications

Two metrics were established as important for

communication: 1) maximum number of communication

Fig. 4. Photo of the testbed setup during latency testing

Fig. 5. Diagram of the communications testbed with Raspberry Pi

nodes, Arduino Uno, central computer, and code deployment computer

Fig. 6. Diagram of the different communication connections to support

testing.

messages without data loss and 2) latency associated with the

communicating and processing of messages.

1) Maximum Speed of Communications without Data Loss

The error rate of messages with the UDP communication

socket needed to be determine, as UDP is a “connectionless”

communication protocol that does not ensure data is received.

Other protocols, such as Modbus or MQTT, have incorporated

data verification, and therefore do not need their error rate

tested. However, this verification limits their maximum

messages per second.

To determine the maximum UDP messages per second, a

python script was developed on the testbed to send a specified

number of UDP messages per second. The messages per

second started at 300, and incrementally increased to a

maximum of approximately 9000 messages. The sent and

received data was compared to determine how many messages

were properly received.

 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑠𝑒𝑛𝑡−𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑠𝑒𝑛𝑡
 (1)

2) Anticipated Speed of Communications
The speed of the data transfer from point to point is

important, as it can be a limiting factor in PES control. Two
factors limit the speed in which data is sent and processed, the
network latency and the computational speed of the Raspberry
Pi 3B. The data flow of a UDP message is shown in Fig. 8. The
data flow is as follows:

• Push button: The action taken by user or agent to
initiate sending a message.

• Encode Message (tencode): The message data is encoded
into 32 bits that contains the category, subcategory,
and value. (i.e. Control/Output Voltage/120)

• Send/Receive Message (tlatency): The 32-bit data is
processed, sent, and received over the network using
the “socket” library in Python 3.

• Decode Message (tdecode): The 32 bits are decoded into
the category, subcategory, and data value

The total message time can be computed as:

 𝑡𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑡𝑒𝑛𝑐𝑜𝑑𝑒 + 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑡𝑑𝑒𝑐𝑜𝑑𝑒 (2)

To measure the times accurately, GPIO pins of the Raspberry
Pi’s were used. Based on the value being measured, a GPIO pin
switched between “HIGH” and “LOW.” The pulses were
measured by an Arduino Uno microcontroller. This allowed the
Raspberry Pi’s to not be synchronized which latency testing.
The accuracy of the Arduino was verified using a Yeapook
ADS1013D oscilloscope, as demonstrated in Fig. 5, which
shows the testbed during latency testing. Based on testing, the
average time for a Raspberry Pi 3B to activate a GPIO pin was
<2µs, and therefore was disregarded due to its small value.

IV. RESULTS

This communication testbed was used to determine the
maximum speed and potential latency associated with using the
Raspberry Pi 3B and developed UDP schema. The UDP IPv4
implementation requires 32 bits for the sending and receiving
address, 32 bits for the length and checksum data, and 32 bits
for the PES data. Based on the Raspberry Pi’s maximum
documented ethernet networking speed of 10 mbps, this gives
a theoretical limit of 104167 messages/second [7]. The
measured messages per second verses the error rate is shown in
Fig. 9.

This test showed that the Raspberry Pi can send

approximately 9000 messages per second, well short of the

network capability. However, when messages exceeded 3325

per second data loss was observed. Fig. 10 shows the overall

message time tmessage captured while sending 3000 messages

with no loss. Table I shows the breakout of the communication

components that represent the message. The average overall

message time was measured to be 506 µs. The maximum

message rate is limited by the time required to encode the UDP

message, as:

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑡𝑒𝑛𝑐𝑜𝑑𝑒
=

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

112 µs
 = 8928 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 (3)

and network latency as:

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=

1 𝑚𝑒𝑠𝑠𝑎𝑔𝑒

292 µs
 = 3424 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 (4)

Fig. 7. The data flow of messages with the custom UDP

communication scheme

Fig. 8. Messages sent per second verses error rate

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 2000 4000 6000 8000 10000

E
rr

o
r

R
at

e

Messages per second

In this setup, the network latency plays the largest role in

limiting the maximum message rate (which is limited by the

ethernet port on the Raspberry Pi). However, clearly the

computational capabilities of the Raspberry could also impose

additional limits based on other computational needs for the

agent system.

TABLE I. AVERAGE TIMES

tencode 112 µs

tlatency 292 µs

tdecode 102 µs

tmessage 506 µs

I. CONCLUSION

This paper covers the need, requirements, and development
of a testbed to help aid the deployment of an agent system
supporting power electronic systems. The testbed streamlines
the process of communications evaluation and testing with auto
deployment functionality.

Furthermore, this paper demonstrates use of the testbed to
examine a new UDP communication schema implemented with
a Raspberry Pi 3B. The maximum error-free message rate and
message time of this communication scheme was found with
the testbed and quantified.

Future work with this testbed will include validating the full
communication messaging, from master controller to end node
to establish baselines for the ability to respond to controls
quickly. This work will encompass MQTT, UDP, and Modbus.
Future work also includes testing with different computer
platforms, such as the Raspberry Pi 4, which has faster network
speed and more computational power. By using newer
hardware, the data transfer limits on low-cost single-board
computers for future PES can be validated and implemented.
Last, cybersecurity protocols, such as SSL for UDP, will be
explored.

II. ACKNOWLEDGMENTS

This work was funded by the U.S. Department of Energy,

Office of Electricity, Energy Storage Program under contract

number DE-AC05-00OR22725.

REFERENCES

[1] L. M. Tolbert et al., “Power Electronics for Distributed

Energy Systems and Transmission and Distribution

Applications,” Ornl/Tm-2005/230, no. December, pp. 65–

91, 2005

[2] M. Starke et al., “A Multi-Agent System Concept for

Rapid Energy Storage Development,” 2019 IEEE Power

Energy Soc. Innov. Smart Grid Technol. Conf. ISGT

2019, pp. 1–5, 2019

[3] M. Starke et al., “Residential (Secondary-Use) Energy

Storage System with Modular Software and Hardware

Power Electronic Interfaces,” 2019 IEEE Energy Convers.

Congr. Expo. ECCE 2019, pp. 2445–2451, 2019

[4] N. A. Z. Musa, M. Z. M. Yusoff, R. Ismail, and Y. Yusoff,

“Issues and challenges of forensics analysis of agents’

behavior in multi-Agent systems: A critical review,” 2015

Int. Symp. Agents, Multi-Agent Syst. Robot. ISAMSR

2015, pp. 122–125

[5] M. T. Smith, M. R. Starke, M. Chinthavali, and L. M.

Tolbert, “Architecture for Utility-Scale Multi-Chemistry

Battery Energy Storage,” 2019 IEEE Energy Convers.

Congr. Expo. ECCE 2019, pp. 5386–5392, 2019

[6] M. Starke et al., “Networked Control and Optimization for

Widescale Integration of Power Electronic Devices in

Residential Homes,” 2019 IEEE Energy Convers. Congr.

Expo. ECCE 2019, pp. 3496–3501, 2019

[7] J. Geerling, “Getting Gigabit Networking on a Raspberry

Pi 2, 3 and B+.” https://www.jeffgeerling.com/blogs/jeff-

geerling/getting-gigabit-networking (accessed Sep. 25,

2020).

[8] M. Starke et al., “Agent-based framework for supporting

behind the meter transactive power electronic systems,”

2020 IEEE Power Energy Soc. Innov. Smart Grid

Technol. Conf. ISGT 2020, 2020

Fig. 9. UDP message time tmessage over 3000 messages

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000

M
es

sa
g
e

T
im

e
(µ

s)

Message Number

