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Abstract—Wireless power transfer (WPT) systems for Electric
Vehicles (EVs) are designed to meet specifications such as stray
field, power transfer, efficiency, and ground clearance. Typical
design approaches include iterative analysis of predetermined
coil geometries to identify candidates that meet these constraints.
This work instead directly generates WPT coil shapes and
magnetic fields to meet specifications and constraints through the
optimization of Fourier basis function coefficients. The proposed
Fourier Analysis Method (FAM) applies to arbitrary planar
coil geometries and does not rely on iterative finite-element
analysis (FEA) simulations. This flexibility allows for rapid
design evaluation across a larger range of coil geometries and
design specifications. A prototype coil is built to compare FAM
outputs to experimental measurements and FEA simulations. The
FAM is then used to illustrate the tradeoff of coil current and
stray field for a given power level showing that the method is
capable of generating optimized coil shapes to meet arbitrary
field constraints.

Index Terms—wireless power transfer, inductive power trans-
mission, coil design, electric vehicles, Fourier analysis

I. INTRODUCTION

Wireless power transfer (WPT) for Electric Vehicles (EVs)
has several benefits over conductive charging including im-
provements in convenience, safety, automation, and vandalism
resilience. With these benefits, stationary WPT systems have
already been implemented at private residences, bus stops,
docks, and warehouses with power levels from 3kW to 300kW.
However, fast-charging levels up to 400kW are needed to
make the charging times of EVs comparable to conventional
refueling times [1]. The systems must also meet applicable
regulatory requirements, such as stray field safety limits and
radiated EMI, and fit within the applicable ground clearances
and track of vehicles as in Fig. 1. The public exposure
magnetic field limit set by the International Commission of
Non-Ionizing Radiation Protection (ICNIRP) is 27µTrms in
the frequency range of 3kHz – 10MHz [2]. In the SAE’s J2954
recommended practice for wireless power transfer, this equates
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Fig. 1: (a) Illustration of the EV WPT field boundaries given
by xext and yext, system airgap zgap and magnetic scalar
potential Ψ(x, y, z) used in the Fourier Analysis Method
(FAM). (b) FAM axes layout and key equations.

to a 27µTRMS field limits outside the vehicle extents and within
the vehicle in the frequency range of 79kHz-90kHz [3].
The design of WPT systems to meet specifications such as

power level, coupling, airgap, misalignment tolerance, stray
field, and efficiency requires the computation of the fields
and inductances of various coil geometries. This is often
accomplished with finite element analysis (FEA) approaches
[4] or analytical methods [5]. In either case, a candidate,
parameterized coil geometry must be defined before the de-
sign process begins, limiting the scope of coil geometries
considered in the design. Complex coil geometries such as
bipolar coils [6], [7], and coils with shielding turns [5]
have been shown to enable higher power levels under stray
field limits. However, attempting to consider all possible coil
geometries, as well as other design parameters such as oper-
ating frequency, number of turns, and conductor types, results
in a near-intractable design space. With rising numbers of
iterations needed, optimization with FEA-based methods that
rely on brute-force iterations with full or partial 3D-modeling
becomes increasingly computationally expensive. Likewise,
many analytical methods are pertinent only to circular or
rectangular coils and are not general enough to model a large



range of possible geometries. This work seeks to develop a
coil design methodology which is not constrained by pre-
defined geometric templates, broadening the scope of design
optimization in WPT systems.

The Fourier Analysis Method (FAM) is a promising candi-
date to meet this challenge. In the Fourier Analysis Method
(FAM), the coil fields are first designed to optimize perfor-
mance through variation of Fourier basis function coefficients.
The computed fields are then discretized into winding geome-
tries, without constraint on winding shape. This allows for
the rapid computation of the coil conductor geometry, coil
inductances, currents, and fields. The FAM is used to develop
a convenient, fast method to optimize coil geometry for given
stray field and power level specifications.

Magnetic component design using Fourier basis functions
is well-known in the design of MRI gradient coils [8], [9],
and electric machines [10]. The coil design problem is ill-
poised because there is an infinite number of possible current
distributions on a plane that can create a given field at a
distance. However, the problem can be regularized to have
one unique solution when objectives such as minimum power
dissipation or stored energy are considered. In general, several
basis functions types are possible such as triangular basis
functions and Fourier basis functions [8]. However, most coil
designs exhibit symmetry such that the number of sinusoidal
or Fourier basis functions needed will be lower, reducing the

matrix sizes, number of iterations, and overall computational
time.

II. THE FOURIER ANALYSIS METHOD

The FAM works by modeling the scalar magnetic potential
of the coil as a function of the coefficients of Fourier basis
functions. These functions are two-dimensional sinusoidal
functions of different spatial wavelengths in the Cartesian
x-y plane. As illustrated in Fig. 1, each basis function is
defined by spatial wavenumbers kx and ky in the x and y-
directions, in units of radians per meter. As later shown, the
wavenumber in the z-direction, kz , is a function of kx and ky .
These wavenumbers are defined by k = 2π/λ where λ is the
wavelength of the sinusoidal function. The four basis function
sets considered in the FAM shown in Fig. 2 are combinations
of the sine and cosine functions . In the FAM, an N ×N × 4
matrix of coefficients is used as the optimization variable.
Each N × N × 1 matrix represents the first quadrant of a
basis function set and can be used with or independently of
the others. To compute the full Fourier-domain matrix of the
coil shape, each N ×N × 1 matrix is multiplied and reflected
according to the symmetry conditions of Fig. 2a to create a
(2N−1)×(2N−1) matrix. The summation of these matrices
yield the Fourier-domain coefficients ψ(kx, ky) = ψ(m,n) of
the coil shape. The scalar magnetic potential in the spatial
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Fig. 2: Diagram of the 4 Basis Functions sets considered in the Fourier Analysis Method. The 4 sets are combinations of sines
and cosine functions in two dimensions, each governed by corresponding symmetry conditions. (a) The symmetry conditions
for each basis function set comprised of real and complex conjugate relationships. (b) Example plot and coefficients of the
cos kxx cos kyy basis function with kx = 1 rad/m and ky = 2 rad/m. (c) Example plot and coefficients of the sin kxx cos kyy
basis function with kx = 1 rad/m and ky = 2 rad/m.



domain, Ψ(x, y, z), is the Inverse Discrete Fourier Transform
(IDFT) of this matrix,

Ψ(x, y, z) =

2N−1∑
m=1

2N−1∑
n=1

ψ(m,n)ej(kxx+kyy+kzz)/4. (1)

The potentials in the X-Y plane are calculated with a dis-
cretization in the x and y dimensions of dx and dy respec-
tively.

A. Field and Current Computation

In the Fourier domain, the basis functions can be directly
differentiated or integrated to obtain algebraic relationships
between the potential Ψ and the field B by the relationship
B = µ0H = −µ0∇Ψ. Neglecting displacement current in
quasi-magnetostatic conditions, the wavenumber kz is derived
by observing that ∇×B = 0 in the absence of airgap currents.
Combined with ∇ ·B = 0, the fields and potentials satisfy

∇2Ψ = ∇2B = 0. (2)

Therefore, when real, non-zero wavenumbers exist in the x
and y-directions, kz is imaginary and is

kz = ±
√
−k2

x − k2
y = ±jγ. (3)

The magnetic potential in the airgap must satisfy

∂2Ψ

∂z2
− k2

xΨ = 0 (4)

which has solution

Ψ(z) = c1e
−γz + c2e

γz. (5)

The constants c1 and c2 are found using the boundary condi-
tions at Ψ(0) and Ψ(zgap), yielding the relationship derived
in [10]

Ψ(z) =
sinh γz

sinh γzgap
Ψ(zgap)−

sinh γ(z − zgap)
sinh γzgap

Ψ(0). (6)

By differentiating this with B = µ0H = −µ0∇Ψ, the Bz
field at z = 0 and z = zgap are[
Bz(zgap)
Bz(0)

]
= −µ0γ

[
coth γzgap − 1

sinh γzgap
1

sinh γzgap
− coth γzgap

] [
Ψ(zgap)

Ψ(0)

]
(7)

For a discrete set of spatial frequencies, the fields at the
secondary coil, where z = zgap, due to the potential of the
primary coil varying in the x and y plane at z = 0, are a
function of zgap and γ =

√
k2
x + k2

y for ferrite backed coils
as in (8)-(10). As this calculation determines the fields from
the primary coil only, it is assumed that no currents are present
in the secondary coil such that Ψ(zgap) = 0 in (7).

Bx(x, y, zgap) =

2N−1∑
m=1

2N−1∑
n=1

−µ0jkxψ(m,n)ej(kxx+kyy)

4 sinh γzgap
(8)

By(x, y, zgap) =

2N−1∑
m=1

2N−1∑
n=1

−µ0jkyψ(m,n)ej(kxx+kyy)

4 sinh γzgap
(9)

Bz(x, y, zgap) =

2N−1∑
m=1

2N−1∑
n=1

−µ0jγψ(m,n)ej(kxx+kyy)

4 sinh γzgap
(10)

For air-core coils, the fields will be half or less as the
magnetic path lengths are double or more than in ferrite
backed coils. Here, the boundary conditions Ψ(z) = 0 occur
at infinity.[
Bz(zgap)
Bz(0)

]
= −µ0γ

[
1/2 −e−γzgap

e−γzgap −1/2

] [
Ψ(zgap)

Ψ(0)

]
(11)

By (6)-(11), fields with higher kx and ky , i.e. with shorter
wavelengths, will decrease in magnitude faster in the z-
direction than those with smaller kx and ky . In short, the near-
field scattering phenomenon describes how coils with larger
diameters have fields that decay more slowly away from the
coil surface than those of smaller coils.

The potentials of the coils are determined by currents
flowing in the plane of the coil. The continuous surface
currents in the x and y-direction are Kx and Ky

K = ∇× k̂Ψ =
∂Ψ

∂y
î− ∂Ψ

∂x
ĵ (12)

Kx(x, y, 0) =

2N−1∑
m=1

2N−1∑
n=1

jkyψ(m,n)ej(kxx+kyy)/4 (13)

Ky(x, y, 0) =

2N−1∑
m=1

2N−1∑
n=1

−jkxψ(m,n)ej(kxx+kyy)/4. (14)

B. Computation of Coil Inductance, Current, and Power
The mutual and self magnetic energies, Em and Es respec-

tively, are

Em(ψ) =

∫
Ω

Ψ(x, y, 0)Bz(x, y, zgap)dΩ (15)

Es(ψ) =
1

2

∫
Ω

Ψ(x, y, 0)Bz(x, y, 0)dΩ. (16)

These energy values are related to the total magnetic energy
of the system W

W = Es1(ψ) + Es2(ψ) =
1

2
L1I

2
1 +

1

2
L2I

2
2 +MI1I2. (17)

Assuming matched coils with L1 = L2 operating with coil
RMS currents of I1 = I2, the equivalent coupling coefficient
k of the system is

k =
Em(ψ)

2Es(ψ)
=

∫
Ω

Ψ(x, y, 0)Bz(x, y, zgap)dΩ∫
Ω

Ψ(x, y, 0)Bz(x, y, 0)dΩ
. (18)

By choosing the number of turns of the coil, NT , the conductor
paths, currents, and coil shape are determined by the contours
C of the continuous magnetic potential

I1 = (max Ψ(x, y, 0)−min Ψ(x, y, 0))/NT (19)

C = min Ψ(x, y, 0)) + (0 : (NT − 1) +
1

2
)I1. (20)

Equation (17) is used to calculate L1 and L2 and the mutual
inductance of the system, M , once I1 and I2 are determined.
The coil-to-coil power transfer of the system, P , is then

P = 2πfEm(ψ) = 2πfMI1I2. (21)
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Fig. 3: (a) Basis function coefficients ψ(m,n) (b) magnetic scalar potential and (c) surface Bz field of one ferrite coil from
the FAM with an airgap of zgap =0.2m and a coil to coil power transfer of 20kW at 85kHz.

TABLE I: Comparison of FAM, FEA, and Experimental Measurements of Inductance NT =14

Ferrite-Backed Coil Air-Core Coil

Parameter FAM (Continuous) FEA (Windings) FAM (Continuous) FEA (Windings) Experimental Measurements

Self Inductance L1,L2 30.64µH 31.01µH 15.32µH 16.15µH 16.56µH, 16.20µH
Mutual Inductance M 1.31µH 1.27µH 0.32µH 0.31µH 0.31µH

C. Load Impedance Sensitivity

The assumption that the primary and secondary currents
are equal, I1 = I2, assumes that the coils are matched and
are operating at resonance close to the optimal load. With an
equivalent AC load resistance on the secondary side, RL, and
parasitic resistances in primary and secondary coils of R1 and
R2, respectively, a compensated, series-series WPT system is
modeled by [

V1

0

]
=

[
R1 −jωM
−jωM R2 +RL

] [
I1
I2

]
. (22)

Solving this circuit for the output power Pout = I2
2RL and

dividing by the input power Pin = V1I1, the efficiency is

Pout
Pin

=
I2
2RL
V1I1

=
(ωM)2RL

(RL +R2)[(ωM)2 +R1(RL +R2)]
(23)

which is maximized by optimal loading resistance [11]

RL,opt = R2

√
1 + (ωM)2/R1R2. (24)

For matched coils, R1 = R2 and the optimal load resistance
approximates ωM . When operating with a load close to
RL,opt, the phase of the input impedance is relatively flat
with frequency around resonance, such that current does not
become inductive with a small increase in frequency above
resonance to ensure the soft-switching of the inverter. This is
avoided by setting RL slightly above RL,opt, but I1 will still
approximate I2 for matched coils.

D. Inductance and Field Model Validation

To validate the modeling of the fields and inductances
of coils with FAM, a pair of ferrite coils with extents of
xext = 0.3m and yext = 0.5m and airgap of zgap = 0.2m
were designed as in Fig. 3. The potentials and fields are
shown with a coil-coil power transfer of 20kW at 85kHz and
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Fig. 4: (a) Constructed air-core coil and (b) FEA simulation
of the coil. (c) Scaled measured magnitude of the Bz field.

were determined by a similar optimization methodology as in
Section III. The output is a three-pole field shape centered on
the origin that consists of only cosx cos y basis functions.

The contours of the magnetic potential of Fig. 3b with
NT = 14 at values of C are derived and are used to build
air-core coils as in Fig. 4a with 10AWG Litz wire. Inductance
measurements of the coils were taken on a Keysight E4990A
impedance analyzer. The inductance values from the FAM,



FEA simulations, and experimental measurements are given
in Table I. As seen, the inductance values derived from the
FAM method are within 5% of the FEA results and 7% of
the measurements. The FEA simulation result of the fields is
shown in Fig. 4b. Field measurements of Bz at the surface
of the coil were taken with a sensing coil 31mm in diameter
with 45 turns of 24 AWG magnet wire and are plotted in
Fig. 4c. The comparison of the model fields and inductance to
the measured values demonstrate that the FAM can accurately
predict the inductance, coupling, and field distribution for the
output.

III. OPTIMIZATION OF STRAY FIELD AND CURRENT

Using the FAM, a multi-objective optimization is formulated
and solved to design coil geometries with objectives and
constraints based on minimizing the total current in the coil
while limiting the stray field maximum outside the coil extent.
Each objective and constraint is normalized to scale derivatives
to similar values to assist the convergence of gradient-based
solvers.

The optimization is formulated as minimization of the sur-
face integral of the total current in the coil structure squared,∫

Ω
K(x, y, 0)2dΩ. The surface integral∫

Ω

K(x, y, 0)2dΩ = (||Kx(ψ)||22 + ||Ky(ψ)||22)/16 (25)

is calculated by noting that the Fourier transform is a unitary
function. This avoids the computation of K(x, y, 0) in each
objective function evaluation step. The 1-norm of the magni-
tude of the basis function coefficient ψ is added to eliminate
small values of unused basis function sets such as sin 0 cos y
as given in Fig. 2 yielding the objective function

||Kx(ψ)||22 + ||Ky(ψ)||22
16P

+ 0.1
||ψ||1
P

(26)

The first constraint is the coil-coil power transfer computed
using (21)

(P − 2πfEm(ψ))/P ≤ 0. (27)

The next constraint is the maximum average stray field mag-
nitude Bstr,lim in the airgap outside the measurement extents
xmeas and ymeas.

(||Bstr,avg(x, y)||50 −Bstr,lim)/Bstr,lim ≤ 0 (28)

The inclusion of the stray field as a constraint ensures the
compliance of the system with safety standards on public
magnetic field exposure. This is computed as the 50-norm of
the spatial stray-field matrix which approximates the infinity
norm or maximum magnitude of the matrix. Bstr,avg is
the average field magnitude outside the measurement extents
xmeas and ymeas and is computed similar to Bavg in (32). The
average of the fields in the airgap is derived by integrating the
contribution from each basis function from z = 0 to z = zgap
and dividing by zgap to obtain the average field in the airgap,

Bx,avg(x, y) =

2N−1∑
m=1

2N−1∑
n=1

−µ0jkxψ(m,n)ej(kxx+kyy)

γzgap
(29)

By,avg(x, y) =

2N−1∑
m=1

2N−1∑
n=1

−µ0jkyψ(m,n)ej(kxx+kyy)

γzgap
(30)

Bz,avg(x, y) =

2N−1∑
m=1

2N−1∑
n=1

−µ0γψ(m,n)ej(kxx+kyy)

γzgap
. (31)

The average field magnitude Bavg(x, y), is then

Bavg(x, y) =√
Bx,avg(x, y)2 +By,avg(x, y)2 +Bz,avg(x, y)2. (32)

The third constraint limits the continuous current density to
the desired coil extents xext and yext such that the surface
integral of the stray current squared,

∫
Ω
Kstr(x, y, 0)2dΩ, is a

small percentage, α = 1e-4, of the surface integral of the total
current

∫
Ω
K(x, y, 0)2dΩ.∫

Ω
Kstr(x, y, 0)2dΩ− α

∫
Ω
K(x, y, 0)2dΩ∫

Ω
K(x, y, 0)2dΩ

≤ 0 (33)

In summary, the objective function and constraints form the
optimization

min

(
||Kx(ψ)||22 + ||Ky(ψ)||22

16P
+ 0.1

||ψ||1
P

)
s.t.

(P − 2πfEm(ψ))/P ≤ 0,

(||Bstr,avg(x, y)||50 −Bstr,lim)/Bstr,lim ≤ 0,∫
Ω
Kstr(x, y, 0)2dΩ− α

∫
Ω
K(x, y, 0)2dΩ∫

Ω
K(x, y, 0)2dΩ

≤ 0.

(34)

A. Optimization Outputs, Tradeoff of Current and Stray Field

For Bstr,lim of 5µT to 1mT the optimization of (34)
was solved using xext = 0.7m and yext = 0.5m with an
airgap of zgap = 0.2m, coil-coil power of P = 6.6kW, and
frequency of f = 85kHz. The measurement extents were
xmeas = 0.8m and ymeas = 0.6m such that the stray fields are
measured at a distance of 5cm from the coil extent. The design
space dimensions are Dx = Dy = 1.4m with discretization
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Fig. 5: The maximum average stray field magnitude for the
optimized coils vs. the square root of the integral of the current
magnitude squared over a range of Bstr,lim of 5µT to 1mT.
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Fig. 6: Plots of coil contours from each basis function for xext = 0.7m and yext = 0.5m when constrained by Bstr,max = 1mT
with a number of turns NT = 20. (a) A rectangular coil from the cosx cos y set. (b) A bipolar coil in the x-direction from
the sinx cos y set. (c) A bipolar coil in the y-direction from the cosx sin y set. (d) A 4-pole coil from the sinx sin y set. Plots
when constrained by Bstr,max = 20µT with a number of turns NT = 24. (e) A shielded rectangular coil from the cosx cos y
set. (f) A shielded bipolar coil in the x-direction from the sinx cos y set. (g) A shielded bipolar coil in the y-direction from
the cosx sin y set. (h) A shielded 4-pole coil from the sinx sin y set.
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Fig. 7: Points from the optimization where Bstr,max = 100µT shown when f = 85kHz and P = 6.6kW. (a) Coil structure
from the cosx cos y set with NT = 25. (b) Discretized surface field of the cosx cos y coil shape. (c) FEA output of the
cosx cos y coil. (d) Surface current magnitude of the cosx cos y coil. (e) Coil structure from the sinx cos y set with NT = 30.
(f) Discretized surface field from the sinx cos y coil. (g) FEA output of the sinx cos y coil. (h) Surface current magnitude of
the sinx cos y coil.

dx = dy = 0.02m. The spatial wavenumbers kx and ky of
the basis functions are chosen so that kx = m(2π/Dx) and
ky = n(2π/Dy). N = 15 so that the optimization variable

is a 15 × 15 × 4 matrix of weights when all basis functions
are used. With these parameters, each evaluation of (34) took
18.1ms when using all basis functions. The processor is an



Intel Xeon C5-1620 with 80GB of RAM.
The solutions for Bstr,max of 5µT to 1mT are plotted in

Fig. 5. The current magnitude integral is computed as the
square root of (25). As seen in Fig. 5, some basis functions
did not converge when constrained by field Bstr,lim values:
below Bstr,lim = 7µT for the cosx cos y basis function, below
Bstr,lim = 6µT for sinx cos y, and below Bstr,lim = 20µT for
cosx sin y and sinx sin y. In these cases, convergence requires
basis functions with higher frequencies. With higher numbers
of basis functions N , and more iterations, solutions for these
points could likely be found. However, these outputs require
a relatively high current magnitude and may not be needed
to meet stray field specifications. Likewise, with higher stray
field limits than 200µT, the stray field limit did not constrain
the output compared to the stray current constraint.

As Bstr,lim is reduced, there is an improvement in the
outputs of the sinx cos y set over the cosx cos y set. Outputs
representing combinations of the cosx cos y and sinx cos y
basis functions were possible at this crossover point. It is
expected that additional crossover points with other basis
function sets will occur as Bstr,lim is further reduced. It
was observed that the optimality of the basis function sets
is sensitive to the aspect ratio of the coil used. For example,
if xext is chosen to be smaller than yext, the cosx sin y basis
function set required less current overall than the sinx cos y
basis function set.

The cosx cos y basis functions result in rectangular, circular,
or other unipolar coil shapes or shapes with odd numbers of
poles. The sinx cos y and cosx sin y basis functions result in
bipolar shapes or shapes with even numbers of poles oriented
in the x-direction or y-direction respectively. The sinx sin y
basis function results in coils structures with multiples of four

poles. Examples of each of these for the highest stray field
bound for Bstr,max = 1mT are shown in Fig. 6 for a number
of turns of NT = 20.

The solutions for Bstr,lim = 1mT in Fig. 6a-6d are dom-
inated by lower frequency wavenumbers with longer spatial
wavelengths that have smaller decay in the z-direction. The
solutions for Bstr,lim = 20µT shown in Fig. 6e-6h have
higher frequency wavenumbers with smaller main poles and
have small side-pole structures similar to shielding turns. All
solutions in Fig. 6e-6h have total amp-turn values greater than
their respective counterparts in Fig. 6a-6d which result in
larger total current magnitudes in the coil for the same power
transfer level.

B. Analysis of Coil Geometries

Based on the optimization results, the two coil geometries in
Fig. 7 were selected for further analysis. These points are from
the optimization where Bstr,max = 100µT for the cosx cos y
basis function and the sinx cos y basis function. For a coil-coil
power transfer of 6.6kW, the cosx cos y coil has V1 = 382.3V
and I1 = 17.3A and the sinx cos y coil has V1 = 305.4V and
I1 = 21.6A. An FEA solver was used to derive the inductance
and fields for the 85kHz operating frequency for comparison
to the values derived in FAM. The fields at mid-airgap from
the two coils geometries from FAM and FEA simulation are
shown in Fig. 8. The inductance values derived in FAM versus
FEA simulations are given in Table II.

C. Impact of Coil Discretization

When limited to a single-layer coil, the number of turns
must be chosen so that the conductors can physically be
placed on the surface of the coil in a single layer with wire
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Fig. 8: Fields calculated in FAM and simulated in FEA for the cosx cos y coil (a) Calculated field magnitude at z = 0.1m for
the cosx cos y coil. (b) Fields from FEA simulation with one coil energized for the cosx cos y coil. (c) Calculated stray field
at z = 0.1m for the sinx cos y coil. (d) Fields from FEA simulation with one coil energized for the sinx cos y coil.



TABLE II: Calculated Inductance Values in FAM and FEA

Parameter FAM FEA (Windings) Error (%)

cosx cos y Coil

Self Inductance L1,L2 229.6µH 236.8µH -3.0%
Mutual Inductance M 40.9µH 37.7µH 8.5%

sinx cos y Coil

Self Inductance L1,L2 185.5µH 199.2µH -6.9%
Mutual Inductance M 25.8µH 26.6µH -3.0%
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Fig. 9: Ideal RMS (a) voltage and (b) current for the coil
geometry of Fig. 7a at a power level of 6.6kW. In these plots,
the voltage or current is set as a large number when condition
(35) is violated.

diameters dout. This value is given in datasheets by the wire
manufacturer and includes the outer insulation, coating, and
conductors. This can be assured by relating the wire diameter
and current to the maximum value of Kmag(x, y, 0), Kmax

max Ψ(x, y, 0)−min Ψ(x, y, 0))

NT dout
=

I1
dout

< Kmax. (35)

Since this is dependent on dout, the number of turns that vio-
late this condition varies per gauge of wire. For a given power
level, the product of voltage and current remain approximately
the same, but the impedance ratio varies based on the selection
of NT . As an example, the coil current and voltage for the coil
of Fig. 7a are plotted in Fig. 9. In these plots, multiple Litz
wire diameters are considered to illustrate the limitation of
(35). Here, larger gauges of wire will be limited to higher
I1 and I2 than smaller gauges. For example, the selection of
smaller gauges of wire and more turns may be favorable to
reduce inverter currents when considering the inverter device
RDS loss.

CONCLUSION

In this work, the Fourier Analysis Method (FAM) was
detailed. The FAM was shown to rapidly and accurately
calculate the current, field, power transfer, and inductances and
was used to optimize wireless power transfer coil geometries to
limit stray field while minimizing the total current norm of the
coils at a given power level. The optimization outputs included
several coil geometries similar to those in the literature like
rectangular or bipolar coils, but also more complex coils with
shielding turns that reduce the stray field of the system at the
cost of increased current.

As the power levels of systems rise, system optimizations
including coil geometries and losses are needed to meet the
stray field and efficiency specifications of WPT in electric
vehicles. In future work, the FAM could be used to model
the efficiency of WPT systems. Many loss mechanisms, such
as skin effect and proximity effect conduction losses and
ferrite hysteresis losses are dependent on the fields present
in the coils and the overall conductor path. Operations such
as translation in the Fourier domain are likewise feasible such
that the inclusion of misalignment can be included.
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