
IEEE POWER & ENERGY SOCIETY SECTION

Received September 13, 2020, accepted September 23, 2020, date of publication October 1, 2020, date of current version October 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028060

A Dynamized Power Flow Method Based on
Differential Transformation
YANG LIU , (Graduate Student Member, IEEE), KAI SUN , (Senior Member, IEEE),
AND JIAOJIAO DONG , (Member, IEEE)
Department of EECS, The University of Tennessee, Knoxville, TN 37996, USA

Corresponding author: Kai Sun (kaisun@utk.edu)

This work was supported in part by the Engineering Research Centers (ERC) Program of the National Science Foundation (NSF) and the
Department of Energy (DOE) under NSF Grant EEC-1041877 and Grant ECCS-1610025.

ABSTRACT This paper proposes a novel method for solving and tracing power flow solutions with changes
of a loading parameter. Different from the conventional continuation power flow method, which repeatedly
solves static AC power flow equations, the proposed method extends the power flow model into a fictitious
dynamic system by adding a differential equation on the loading parameter. As a result, the original solution
curve tracing problem is converted to solving the time domain trajectories of the reformulated dynamic
system. A non-iterative algorithm based on differential transformation is proposed to analytically solve the
aforementioned dynamized model in form of power series of time. This paper proves that the nonlinear
power flow equations in the time domain are converted to formally linear equations in the domain of the
power series order after the differential transformation, thus avoiding numerical iterations. Case studies on
several test systems including a 2383-bus system show the merits of the proposed method.

INDEX TERMS Continuation power flow, dynamized power flow, differential transformation, power flow,
power-voltage curve, voltage stability, voltage collapse.

I. INTRODUCTION
Tracing solution curves of power flow equations with the
changes of a trending parameter such as the loading level is
usually a computation-intensive task in power system opera-
tions and planning to prevent steady-state voltage instability
and other insecurities [1]–[4]. An example is computation
of the power-voltage (P-V) curves for critical buses with
the increase of load. Traditionally, the continuation power
flow (CPF) method [5]–[9] is widely used to solve P-V
curves, which adopts a prediction-correction scheme to iden-
tify a series of power flow solutions along the solution curve
where each prediction step gives an initial guess and the
following corrector step performs numerical iterations to
find the converged solution [10]–[12]. However, the CPF
method may suffer from huge computation burdens since
it requires solving nonlinear AC power flow equations for
multiple times using numerical iteration methods [13], [14].
Moreover, the computation burden of the CPF method can
further grow and become unacceptable with modern power
grids being integrated with high renewable energy resources
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and demand response, where such a solution process with
numerical iterations needs to be repeated many times for
multiple contingencies.

In the literature, some techniques are proposed to reduce
the computation burden of the CPF method [15]–[17], falling
into two categories. The first category of techniques aim to
design a more effective predictor than a standard tangent
predictor [10]–[12] as adopted by many commercial CPF
programs [13], [14]. For example, paper [15] proposes three
types of nonlinear predictors to predict a new solution from
more than one previous solutions using interpolation and
polynomial approximation including the Lagrange’s polyno-
mial interpolation formula, Newton’s forward and backward
divided difference formula, and cubic spline interpolation
method. Besides, a secant predictor is used in [16] and a
holomorphic embedding-based predictor is proposed in [17].
Methods in the first category are able to generate a bet-
ter initial guess for the Newton Raphson (NR) method so
as to reduce the total number of iterations; however, they
still require many numerical iterations for solving nonlin-
ear power flow equations. The second category of tech-
niques focus on more efficient correctors than the standard
NR method-based corrector. For example, authors in [15]
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propose a hybrid corrector allowing the switches between
a NR method (taking its merit of robustness) and a fast
decoupled NR method (taking its merit of fast speed) until
a pre-defined maximum total number of iterations. Methods
in this category are mainly used to improve the convergence
performance of numerical iterations, but still require solv-
ing nonlinear AC power flow equations repeatedly. Overall,
a major bottleneck of the above two types of methods lies
in their inherent solution mechanism that the power-flow
equations are essentially solved as algebraic equations in an
iterative manner.

To more efficiently trace solution curves of power flow
equations, this paper proposes a novel dynamized power
flow (DPF) method that extends the power flow model into
a fictitious dynamic system, called a ‘‘dynamized’’ power
flow model, by adding a differential equation about a fic-
titious time, and then solve the complete time-domain tra-
jectory of the dynamic system instead of repeatedly solving
power flow equations for a series of conditions. A differential
transformation (DT) method, which is proved effective for
solving power system transient stability simulation in our
recent works [18]–[20], is applied to solve the dynamized
model, named as dynamized power flow (DPF) method. This
paper proves that the nonlinear AC power flow equations are
converted to formally linear equations after DT, and further
designs an efficient algorithm to solve the time domain tra-
jectory without numerical iterations. Case studies on several
test systems including a 2383-bus system demonstrate the
accuracy, computational complexity and time performance of
the proposed approach compared with a CPF solver.

The rest of the paper is organized as follows. Section II
gives the problem description, section III presents the pro-
posed method, section IV is the case study and section V
draws conclusions.

II. PROBLEM STATEMENT
The conventional power flow equations are given in (1a)
where S̄ is a vector of the complex power injections, V̄ is a
vector of bus voltage phasor, and Ybus is the bus admittance
matrix. By adding the product of a loading parameter λ and
a constant vector b̄ to the left-hand side, a general continuum
of power flow equations is given in (1b).

S̄ = V̄(YbusV̄)∗ (1a)

S̄+ λb̄ = V̄(YbusV̄)∗ (1b)

Note that the vector b̄ is defined to reflect an arbitrarily
direction of load changes, for example, uniform increases
of all generation and load, or increases of generation and
load at certain buses or zones. Meanwhile, practical operating
constraints such as the reactive power limit of generators can
be considered during the load change.

Equation (1b) is further written as the general form in (2)
where g is a nonlinear vector field; y is the bus voltage vector
under rectangular coordinates defined as y = [eT, f T]T,
where e = [e1,. . . , eN ]T and f = [f1,. . . , fN ]T are respectively

the real and imaginary parts of the bus voltage phasor; N is
the total number of buses; λ is the loading parameter.

0 = g(y, λ) (2)

The goal is to determine how power flow solution y
changes with loading parameter λ, shown in (3). After (3) is
obtained, the other system variables (such as voltage mag-
nitude and power injections) are easily calculated to draw
P-V curves.

y = y(λ) (3)

Generally, analytical expression of (3) is unavailable due to
the nonlinearity of g in (2). Therefore, a prediction-correction
scheme and numerical iterations are needed in conventional
CPF method.

III. PROPOSED DYNAMIZED POWER FLOW METHOD
A. INTRODUCTION OF DIFFERENTIAL TRANSFORMATION
A smooth nonlinear function of time x(t) can be approxi-
mated by a K th order polynomial function of time as shown
in (4), where X (k) is the k th order power series coefficient and
can be calculated by (5).

x(t) =
∑K

k=0
X (k)tk (4)

X (k) =
1
k!

[
dkx(t)
dtk

]
t=0

(5)

Generally, these power series coefficients are calculated
in a recursive manner from k = 0 to k = K , and many
mathematical methods can be used such as the Adomain
decomposition method [21], [22] and the power series-based
method in [23], [24]. However, the applications of the above
methods are limited by their huge computational burdens in
deriving power series coefficient X (k) using the complicated
high order derivative operations.

As an emergingmathematical tool, DT [25]–[28] considers
power series coefficient X (k) as a transformation of x(t) at
the k th order as shown by (6). When multiple functions like
x(t) are to be calculated and analyzed, their high order power
series coefficients can directly be operated and calculated
based on transformation rules introduced by DT. Thus, there
is no need to calculate complicated high order derivatives of
each function.

x(t)→ X (k) (6)

Our recent paper [18]–[19] introduces DT to the power
system field to effectively solve power system nonlinear
differential-algebraic equations (DAEs) for transient stability
simulation. New transformation rules for nonlinear functions
in power system models are proved in [18], [19]. Five rules
are given in (7) and will be utilized in this paper. Here,
X (k) and Y (k) are DTs of functions x(t) and y(t), c is a
constant, and δ is the Kronecker delta function:

i) x(t)± y(t)→ X (k)± Y (k)

ii) cx(t)→ cX (k)
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iii) x(t)y(t)→ X (k)⊗ Y (k) ,
k∑

m=0

X (m)Y (k − m)

iv)
dx(t)
dt
→ (k + 1)X (k + 1)

v) c→ cδ(k) =

{
c, k = 0
0, k 6= 0

(7)

B. IDEA OF THE PROPOSED METHOD
The proposed method has following four steps, where each
step is first briefed below and then described in detail in
Section III-C to Section III-F respectively.

First, the algebraic equation (2) is extended to a set of
DAEs by introducing a fictitious time t and adding two new
equations, i.e., (8a) and (8b). Differential equation (8a) is a
dynamic system to trace the changes of system variables such
as power or voltages, where x(t) is a state variable and f (·) is a
vector field. Algebraic equation (8b) is an ancillary equation
that builds the relationship between the newly introduced
variable x(t) and the original variables y(t) and λ(t). Note
that the ancillary function h may not be needed if x(t) is
selected from one of the variables in y(t) and λ(t). The details
of designing (8a) and (8b) are in Section III-C.

ẋ(t) = f (x(t), y(t), λ(t)) (8a)

0 = h(x(t), y(t), λ(t)) (8b)

0 = g(y(t), λ(t)), i.e.,Equ.(2) (8c)

Second, the DTs of (8a)-(8c) are derived in (9a)-(9c)
respectively, using the transformation rules in (7). Specifi-
cally, the nonlinear power flow equation (8c) is converted
to a new set of equations (9c) that couples the power series
coefficients of y(t) and λ(t) in all orders, i.e., Y (0) . . .Y (k),
3(0). . .3(k).

(k + 1)X (k + 1)

= F(X (0 : k),Y (0 : k),3(0 : k)) (9a)

0 = H (X (0 : k),Y (0 : k),3(0 : k)) (9b)

0 = G(Y (0 : k),3(0 : k)) (9c)

Third, we prove that both (9c) and (9b) satisfy formally
linear equations about the k th order coefficients Y (k) and
3(k), as shown in (10a) and (10b), respectively, where A
matrices are functions of Y (0) and 3(0) and B matrices are
functions of Y (0:k-1) and3(0:k-1). As a result, Y (k), i.e., the
k th order power series coefficient of bus voltage vector, is
analytical solved from Y (0 : k-1) and3(0:k-1), either by (11)
or by (12), depending on if the ancillary function h is needed
when designing the differential equation in (8a).

0 = AgyY (k)+ Agλ3(k)+ Bg (10a)

0 = AhyY (k)+ Ahλ3(k)+ Bh (10b)

Y (k) = −A−1gy (Agλ3(k)+ Bg) (11)[
Y (k)
3(k)

]
= −

[
Agy Agλ
Ahy Ahλ

]−1 [Bg
Bh

]
(12)

Finally, we design a non-iterative algorithm based on (9a)
and (11) or (12) to solve power series coefficients X (k),
Y (k) and 3(k) from k = 0 to any order K in a recur-
sively manner, and approximate variables x(t), y(t) and λ(t)
as power series of time, shown in (13). After y(t) and λ(t)
are solved, the solution curves of power flow equations are
directly obtained, as illustrated in Section IV-A.

x(t) = X (0)+ X (1)t + X (2)t2 + ...X (K )tK

y(t) = Y (0)+ Y (1)t + Y (2)t2 + ...Y (K )tK

λ(t) = 3(0)+3(1)t +3(2)t2 + ...3(K )tK (13)

Among the above four steps, only the last step needs to be
performed online, while the first three steps can be conducted
in the offline stage because they are mainly used to derive
expressions of matrices A and B in (10) and function F
in (9a), which is a one-time effort.
Remarks: there are two important observations: 1) from

(10a) that the nonlinear power flow equation (2) about y(t)
are converted to a formally linear equation about power series
coefficients Y (k) after DT; 2) coefficients on bus voltages are
explicitly solved by (11) or (12) and then used to calculate bus
voltages by (13) in a straightforward manner, which is differ-
ent from using a conventional power flow solver to calculate
bus voltages by numerical iterations. The proposed DT based
method for solving solution curves of power flow equations
differentiates itself from the traditional continuation power
flow method that relies on iterative numerical methods such
as the family of Newton Raphson methods.

C. STEP 1: DYNAMIZING POWER FLOW EQUATION
Two formulations of (8) are proposed to dynamize the power
flow equation (2), shown in (14) and (15) respectively, where
C1 and C2 are constants and vl(t) is the voltage magnitude
of a load bus l. In (14), there is no ancillary equation (8b)
because the selected state variable λ(t) has existed in (2).
In (15), the ancillary equation gives the relationship between
bus voltage magnitude and the rectangular coordinate com-
ponents.

Formulation 1:

λ̇(t) = C1

0 = g(y(t), λ(t)), i.e.,Equ.(2) (14)

Formulation 2:

v̇l(t) = C2

0 = vl(t)2 − el(t)2 − fl(t)2

0 = g(y(t), λ(t)), i.e.,Equ.(2) (15)

For Formulation 1, its purpose is to characterize how the
power changes with time, i.e., the power increases with time
when C1 >0 and decreases with time when C1 <0. It can
be used to trace curve segment in various shapes, either
monotonically or non-monotonically, such as the curves
(a), (b) and (c) in Fig. 1. For Formulation 2, its purpose
is to characterize how the voltage magnitude changes with
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FIGURE 1. Illustration of the two dynamized formulations for tracing
curve segments of power flow equations.

time, i.e., the voltage magnitude increases with time when
C2 >0 and decreases with time when C2 <0. It can also be
used to trace either monotonical or non-monotonical curve
segments such as (a), (b) and (d) in Fig. 1.

The above two formulations can be flexibly used to
trace the full solution curve of a power flow equation. For
example, the high voltage solutions in a P-V curve can
be traced by Formulation 1 with C1 >0, the low voltage
solutions can be traced by Formulation 1 with C1 <0, and
the solution curves near the nose point can be traced by
Formulation 2 with C2 <0.

D. STEP 2: DERIVING DIFFERENT TRANSFORMATION
1) DTS OF NONLINEAR POWER FLOW EQUATION
The nonlinear power flow equation (2) is written into
(16)-(19) under rectangular coordinates, where �PQ, �PV ,
�REF are the set of PQ buses, PV buses and reference bus
respectively, p and q are active and reactive power, e and f
are the real and imaginary parts of bus voltages, g and b are
real and imaginary parts of the admittance, v is the voltage
magnitude, superscript sp means the value is specified, sub-
script i and j are the index of buses.

pspi = gp(y, λ) = −λ1pi +
N∑
j=1

gij
(
eiej + fi fj

)
+

N∑
j=1

bij
(
fiej − eifj

)
if i ∈ �PQ ∪�PV (16)

qspi = gq(y, λ) = −λ1qi −
N∑
j=1

bij
(
eiej + fifj

)
+

N∑
j=1

gij
(
fiej − eifj

)
if i ∈ �PQ (17)

(vspi )
2
= gv(y) = e2i + f

2
i , if i ∈ �PV (18)

espi = ge(y) = ei, if i ∈ �REF

f spi = gf (y) = fi, if i ∈ �REF (19)

The DTs of (16)-(19) are in (20)-(23), respectively.

pspi δ(k)

= Gp(Y ,3)

= −1pi3(k)+
N∑
j=1

gij
(
Ei(k)⊗ Ej(k)+ Fi(k)⊗ Fj(k)

)

+

N∑
j=1

bij
(
Fi(k)⊗ Ej(k)− Ei(k)⊗ Fj(k)

)
if i ∈ �PQ ∪�PV (20)

qspi δ(k)

= Gq(Y ,3)

= −1qi3(k)−
N∑
j=1

bij
(
Ei(k)⊗ Ej(k)+ Fi(k)⊗ Fj(k)

)
+

N∑
j=1

gij
(
Fi(k)⊗ Ej(k)− Ei(k)⊗ Fj(k)

)
if i ∈ �PQ (21)

(vspi )
2δ(k)

= Gv(Y )

= Ei(k)⊗ Ei(k)+ Fi(k)⊗ Fi(k), if i ∈ �PV (22)

espi δ(k)

= Ge(Y ) = Ei(k), if i ∈ �REF

f spi δ(k)

= Gf (Y ) = Fi(k), if i ∈ �REF (23)

For details, the derivation of (20) is elaborated below as an
example. The remaining equations (21)-(23) are obtained in
a similar procedure.
The left-hand-side (LHS) and the first term in the right-

hand-side (RHS) of (20) are obtained by applying the rule
(7-i), (7-ii) and (7-v) to the corresponding terms of (16).
Note that pspi and 1pi are constants and λ = λ(t) is a
variable, therefore their transformations are: pspi → pspi δ(k)
and 1piλ→ 1pi3(k).
The remaining terms in the RHS of (20) are obtained from

the corresponding terms of (16) by following steps:
First, apply the rule (7-iii):

eiej → Ei(k)⊗ Ej(k), fi fj→ Fi(k)⊗ Fj(k)

fiej → Fi(k)⊗ Ej(k), ei fj→ Ei(k)⊗ Fj(k)

Then, apply the rule (7-i) and (7-ii):

gij
(
eiej + fifj

)
→ gij

(
Ei(k)⊗ Ej(k)+ Fi(k)⊗ Fj(k)

)
bij
(
fiej − eifj

)
→ bij

(
Fi(k)⊗ Ej(k)− Ei(k)⊗ Fj(k)

)
Finally, using the rule (7-i), the RHS of (20) is obtained.

2) DTS OF THE DESIGNED DIFFERENTIAL EQUATIONS
For the differential equation in Formulation 1, i.e., (14), its
DT is derived as follows. After applying the rule (7-iv) for
LHS and (7-v) for RHS, (k+1)3(k+1)= C1δ(k) holds. Then,
it can be further written in (24) after replacing k by k-1 and
using the definition of δ(k).

3(k) = C1δ(k − 1) (24)

For Formulation 2 in (15), the DT of the differential
equation is in (25) where the derivation is similar as (24) and
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is omitted here; the DT of the ancillary equation is in (26)
after applying the rule (7-iii) to both sides.

Vl(k) = −C2δ(k − 1) (25)

Vl(k)⊗ Vl(k) = El(k)⊗ El(k)+ Fl(k)⊗ Fl(k) (26)

3) PROOF OF FORMAL LINEARITY OF NONLINEAR POWER
FLOW EQUATION AFTER DT
Proposition 1: The transformed power flow equations
(20)-(23) respectively satisfy formally linear equations
(27)-(30).

0 = aP,iY (k)−1pi3(k)+ εi, if i ∈ �PQ ∪�PV (27)

0 = aQ,iY (k)−1qi3(k)+ µi, if i ∈ �PQ (28)

0 = aV,iY (k)+ 03(k)+ ςi, if i ∈ �PV (29)

0 = aE,iY (k)+ 03(k)− espi δ(k), if i ∈ �REF

0 = aF,iY (k)+ 03(k)− f spi δ(k), if i ∈ �REF (30)

where Y (k) ∈ R2N×1 and 3(k) ∈ R are variables repre-
senting the DT of y and λ respectively; aP,i, aQ,i, aV,i aE,i,
aF,i ∈ R1×2N and εi, µi, ζi ∈ R are parameters given in
(44)-(49) respectively. The detailed proof of Proposition 1 is
in Appendix.

From the Proposition, DTs (9c) of the nonlinear power
flow equation satisfy formally linear equation (10a) with
matrices Agy, Agλ, and Bg given by (31). For notation sim-
plicity, here we let buses 1 toM be PQ buses, busesM + 1 to
N -1 be PV buses and bus N be the reference bus.

Agy =

 Ay,PQ
Ay,PV
Ay,REF

, Agλ =
 Aλ,PQ
Aλ,PV
Aλ,REF

 ,
Bg =

 BPQ
BPV
BREF



Ay,PQ =


aP,1
aQ,1
...

aP,M
aQ,M

, Aλ,PQ = −

1p1
1q1
...

1pM
1qM



BPQ =


ε1
µ1
...

εM
µM



Ay,PV =


aP,M+1
aV,M+1
...

aP,N−1
aV,N−1

, Aλ,PV = −

1pM+1

0
...

1pN−1
0



BPV =


εM+1
ζM+1
...

εN−1
ζN−1


Ay,REF =

[
aE,N
aF,N

]
, Aλ,REF =

[
0
0

]
BREF =

[
−espN δ(k)
−f spN δ(k)

]
(31)

Besides, the DT (26) of the ancillary equation in
Formulation II also satisfies a formally linear equation in
(10b) with proof in the Appendix.

E. STEP 3: RECURSIVELY SOLVING VARIABLES AS POWER
SERIES OF TIME
Following the basic idea in Section III-B, two algo-
rithms are designed to solve power series coefficients
X (k), 3(k), Y (k) up to any desired order, as shown by
Algorithm 1 and Algorithm 2 in Table 1, using Formulation I
and Formulation II respectively. Note that these coefficients
are explicitly calculated with no numerical iteration.
After the power series coefficients are calculated,

y(t) and λ(t) are calculated by evaluating the power series
of time in (13) and the solution curves are directly obtained.
In practical, the multi-time window strategy [18], [19] can
be used to extend the convergence region of power series of
time and ensure the accuracy. The time step length as well as
the order K of the power series of time are usually selected
from trial simulations [19], and the impact of K and time step
length are also studied in [18], [19].

The proposed method can also be applied to more compli-
cated power system models such as 1) considering reactive
power limit of generators, 2) ZIP load model. First, to con-
sider the reactive power limit of generators, the proposed
method can be slightly modified as follows: if a generator
meets the reactive power limit, then it is changed from a
PV bus to a PQ bus; correspondingly, the matrices A and B
need to be re-calculated using (31). Later in Section IV-A,
we demonstrate the proposed method for tracing PV curves
considering reactive power limits. Second, for a nonlinear
power flow equation with ZIP loads, we proved in [29] that its
DTs still satisfy formally linear equations. Therefore, the pro-
posedmethod can be directly applied with slight modification
on matrices A and B.
Regarding the computational complexity, the proposed

method has two unique features: First, it shifts most of
the computation burden to the offline stage, i.e., deriving
the equation for calculating matrices A and B, which is a
one-time effort (the matrices A and B derived in this paper
can be directly used by others without deriving them again);
and the online stage only involves explicit matrix operation
and evaluation of analytical solutions, which do not require
any numerical iterations. Second, the proposed method can
reduce the frequency of solving linear equations compared
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TABLE 1. Algorithms for formulations I & II.

with the CPF method, thus having better computational effi-
ciency. This is because the CPFmethod needs to solve a linear
equation in every iteration and every prediction-correction
step, while the proposed method only needs to solve linear
equations once in each time step, and the total number of
time steps are greatly reduced benefiting from the high order
approximation.

IV. CASE STUDIES
The proposed DPF method is first tested on the IEEE 9-bus
system [13] to demonstrate the basic idea, the impact of load
change directions, and the impact of reactive power limit of
generators. Then, the accuracy, computational complexity,
and computation time are compared with the CPF method in
MATPOWER using several large systems including the IEEE
39-bus system, IEEE 57-bus system and a Polish 2383-bus
test system [13]. At last, the proposed approach is applied
to N -1 contingency analysis. Simulations are conducted in
MATLAB R2017a on a personal computer with i5-8250U
CPU. Without specification, generations and loads of all
buses are uniformly increased. For the CPF method, vari-
ous simulation control parameters are adjusted for the best
time performance, including using the pseudo arc-length for
parameterization, enabling adaptive step size, increasing the
maximum allowed step size and disabling the incremental
curve plotting in each iteration, etc. For the DPF method,

FIGURE 2. Time domain trajectory of the dynamized power flow model.

parameters C1 and C2 are set as 1, K is set as 6 from trail
simulations, and the time step length is fixed at 0.05s for
2383-bus system and 0.1s for other systems.

A. DEMONSTRATION ON THE 9-BUS POWER SYSTEM
To demonstrate the idea of the proposed method, Fig. 2 and
Fig. 3 respectively give the time domain trajectories of the
solved dynamized power flow model and the obtained PV
curve. In the first 1.63s, the loading parameter λ increases
with time in a constant rate while the voltage magnitude
of bus 9 drops from 0.9956 p.u. to 0.6268 p.u., indicat-
ing high voltage solutions. During the time period between
t = 1.63s and t = 1.68s, the voltage is decreased from
0.6268 p.u. to 0.5439 p.u., while the loading parameter is first
increased from 1.63 to reach the maximum value 1.64 and
then decreased to 1.63, indicating the dynamic process of
passing the nose point. Finally, both the loading parameter
and the bus voltage are decreased after t = 1.68s, indicating
the low voltage solutions. The obtained loading limit 1.64 is
the same as the limit from the CPF method.

FIGURE 3. Solution curve of load bus 9 on 9-bus system.

Two scenarios are designed to demonstrate the capabil-
ity of the proposed method on handling load changes with
1) non-uniform directions and 2) reactive power limits.
Fig. 4a shows the PV curve of load bus 9 when increasing
generation at bus 3 and load at bus 7 by 50 MW in active
power and 10 MVar in reactive power. Fig. 4b further shows
the PV curve of the same bus when reactive power limit of
generators is considered. It shows the calculated maximum
loading limits are reduced from 8.17 to 7.79 due to the reac-
tive power limit. These results demonstrate the performance
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FIGURE 4. Solution curves under non-uniform load change direction,
a) not consider reactive power limit, b) consider reactive power limit.

of the proposed method on practical power system models
and applications.

B. ACCURACY, COMPUTATION COMPLEXITY, AND TIME
PERFORMANCE ON LARGE SYSTEMS
Respectively for the 39-bus system, the 57-bus system and the
2383-bus system, the proposedDPFmethod is comparedwith
the CPF method. In all following studies, the CPF method
is tested using the commercial MATPOWER package while
the proposed DPF method is tested using our research code.
Fig. 5 to Fig. 7 show the PV curves of three load buses,
obtained by both the proposed method and the CPF method.
Respectively for the three test systems, the calculated loading
limits are 1.12, 0.88 and 0.89 for DPF method, and 1.13,
0.89 and 0.89 for the CPF method. These results demonstrate
the accuracy of the proposed method.

FIGURE 5. Solution curves on 39-bus system.

For both the CPF method and the DPF method, a major
computation burden is in solving linear equations. Table 2
gives how many times linear equations are solved for both

FIGURE 6. Solution curves on 57-bus system.

FIGURE 7. Solution curves on 2383-bus system.

TABLE 2. Numbers of times of solving linear equations.

methods. It shows that the proposed approach is 10 times
fewer than the CPF method for all the three test systems. This
is because the CPF method needs to solve a linear equation in
each iteration and for every prediction-correction step while
the proposed method only solves a linear equation once in
each time step.

Table 3 further gives the computation times of both meth-
ods. It shows the proposed DPF method is around 9 times,
12 times, and 2 times faster than the CPF method, respec-
tively, for the three test systems. The speed up on the 2383-bus
system is less than speedups on the other two smaller systems
because our current academic research code that implements
the DPF method in MATLAB has not been optimized to as
efficiently handle large-scale matrix operations as the com-
mercial CPF solver in the MATPOWER. However, these test

TABLE 3. Comparison of Time Performance (Unit: second).
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results do demonstrate the potential of the proposed DPF
method for online power flow solution tracing and voltage
stability assessment.

C. APPLICATION TO N-1 CONTINGENCY ANALYSIS
The proposed approach is further applied to screen N -1
contingencies. For the 39-bus system, 46 contingencies are
created each with the loss of each single branch. Fig. 8 shows
the maximum loading condition identified by both methods.
Using the CPF results as benchmarks, the DPF method is
accurate and reliable for all the contingencies. Regarding
the computation time, the CPF method and the DPF method
respectively takes 12.0 s and 1.4 s, showing that the DPF
method can identify insecure contingencies much faster than
the CPF method, and thus can scan more contingencies
than the CPF method within limited time in the real-time
environment.

FIGURE 8. Maximum loading conditions by CPF and DPF.

V. CONCLUSION
In this paper, a novel dynamized power flowmethod has been
proposed to efficiently trace solution curves of power flow
equations. The original curve tracing problem for steady-state
power flow solutions is converted to a time domain sim-
ulation problem about a dynamized model after adding a
differential equation on changes of the operating condition.
An DT-based approach is proposed for efficiently solving the
dynamized model without numerical iterations. Simulation
results have shown high accuracy, reduced computational
complexity and improved time performance of the proposed
DPF method compared with a CPF solver in MATPOWER.
Besides, the proposed method can deal with practical engi-
neering constraints such as the non-uniform load change
directions and reactive power limits of generators.

VI. APPENDIX
To make the proofs more compact, the following Lemma is
first proved. In the Lemma, the transformation of multipli-
cation operation from time domain to the convolution oper-
ation in the domain of power series orders is well-known in
many DT literatures, however, the resulted linear relationship
in (33)-(34), despite their simplicity and being straightfor-
ward, are rarely noticed and exploited as far as the authors
know.

Lemma: The DT of z(t) = x(t)y(t), satisfies a formally
linear equation in (32). Especially, when x(t) = y(t), (33)
holds.

Z (k) = X (k)⊗ Y (k) = aX (k)+ bY (k)+ c (32)
Z (k) = X (k)⊗ X (k) = 2aX (k)+ c (33)

Proof of Lemma:

Z (k) = X (k)⊗ Y (k) =
k∑

m=0

X (m)Y (k − m)

= X (0)Y (k)+ X (k)Y (0)+
k−1∑
m=1

X (m)Y (k − m)

Therefore, (32) holds with a, b and c given below.

a = Y (0), b = X (0), c =
k−1∑
m=1

X (m)Y (k − m)

Proof of Proposition 1:
Use (27) as an example. The RHS of (20) is rewritten as

RHS = −1pi3(k)+ gii (Ei(k)⊗ Ei(k)+ Fi(k)⊗ Fi(k))︸ ︷︷ ︸
Term 1

+

N∑
j=1,j 6=i

gij
(
Ei(k)⊗ Ej(k)+ Fi(k)⊗ Fj(k)

)
︸ ︷︷ ︸

Term 2

+

N∑
j=1

bij
(
Fi(k)⊗ Ej(k)− Ei(k)⊗ Fj(k)

)
︸ ︷︷ ︸

Term3

According to the Lemma, the three terms are rewritten as:

Term 1 = 2giiEi(0)Ei(k)+ 2giiFi(0)Fi(k)

+ gii
k−1∑
m=1

Ei(m)Ei(k − m)

+gii
k−1∑
m=1

Fi(m)Fi(k − m)

Term 2 =
N∑

j = 1,
j 6= i

gij
(
Ej(0)Ei(k)+ Ei(0)Ej(k)

)

+

N∑
j = 1
j 6= i

gij
(
Fj(0)Fi(k)+ Fi(0)Fj(k)

)

+

N∑
j = 1
j 6= i

gij

(
k−1∑
m=1

Ei(m)Ej(k − m)

+

k−1∑
m=1

Fi(m)Fj(k − m)

)
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Term 3 =
N∑
j=1

bij
(
Ej(0)Fi(k)+ Fi(0)Ej(k)

)
−

N∑
j=1

bij
(
Fj(0)Ei(k)+ Ei(0)Fj(k)

)
+

N∑
j=1

bij

(
k−1∑
m=1

Fi(m)Ej(k − m)

−

k−1∑
m=1

Ei(m)Fj(k − m)

)

Finally, (27) is obtained by summating the above three
terms, with vector aP,i and parameter εi in (34) and (39).
Similarly, (28)-(30) can be provedwith vectors aP,i, aQ,i, aV,i,
aE,i, aF,I and parameters εi, µi, ζi in (34)-(41).

aP,i =
[
αi1 βi1 · · · αij βij · · ·

]
,where

αij = gijEi(0)+bijFi(0), βij=gijFi(0)−bijEi(0), if j 6= i

αii =

N∑
j=1

(
gijEj(0)− bijFj(0

)
+ giiEi(0)+ biiFi(0)

βii =

N∑
j=1

(
bijEj(0)+ gijFj(0)

)
− biiEi(0)+ giiFi(0)

(34)

aQ,i =
[
φi1 ψi1 · · · φij ψij · · ·

]
, where

φij = −bijEi(0)+gijFi(0), ψij=−bijFi(0)−gijEi(0), if j 6= i

φii = −

N∑
j=1

(
bijEj(0)+ gijFj(0

)
− biiEi(0)+ giiFi(0)

ψii =

N∑
j=1

(
gijEj(0)− bijFj(0)

)
− giiEi(0)− biiFi(0)

(35)

aV,i =
[
0 · · · 0 2Ei(0) 2Fi(0) 0 · · · 0

]
(36)

aE,i =
[
0 · · · 0 1 0 0 · · · 0

]
(37)

aF,i =
[
0 · · · 0 0 1 0 · · · 0

]
(38)

εi =

N∑
j=1

gijcij +
N∑
j=1

bijdij−piδ(k),where

cij :=
k−1∑
m=1

Ei(m)Ej(k − m)+
k−1∑
m=1

Fi(m)Fj(k − m)

dij :=
k−1∑
m=1

Fi(m)Ej(k − m)−
k−1∑
m=1

Ei(m)Fj(k − m)

(39)

µi = −

N∑
j=1

bijcij +
N∑
j=1

gijdij − qiδ(k) (40)

ςi = cii − v2i δ(k) (41)

Proof of (10b) from (26): From the Lemma, there are

El(k)⊗ El(k) = 2El(0)El(k)+
k−1∑
m=1

El(m)El(k − m)

Fl(k)⊗ Fl(k) = 2Fl(0)Fl(k)+
k−1∑
m=1

Fl(m)Fl(k − m)

Then, (26) is rewritten as:

Vl(k)⊗ Vl(k)

= 2El(0)El(k)+ 2Fl(0)Fl(k)

+

k−1∑
m=1

El(m)El(k − m)+
k−1∑
m=1

Fl(m)Fl(k − m)

Finally, (10b) is obtained with al and ξl given in (42).

al =
[
0 · · · 0 2El(0) 2Fl(0) 0 · · · 0

]
ξl =

k−1∑
m=1

El(m)El(k − m)

+

k−1∑
m=1

Fl(m)Fl(k − m)− Vl(k)⊗ Vl(k) (42)
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