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Abstract—Y-Matrix Modulated (YMM) Modular Multilevel 

Converter (MMC) was proposed recently. This modulation 

utilizes the self-voltage balancing capability of an MMC so that the 

conventional voltage balancing algorithm of MMC can be 

eliminated. YMM demonstrates that MMC has inherent self-

voltage balancing capability. However, YMM assumes the voltage 

drop on the arm inductor to be zero to achieve MMC self-voltage 

balancing. This paper quantitatively justifies the zero voltage drop 

assumption for YMM based MMC and derives the general state-

space model for MMC. Based on the general state-space model, 

the time-domain state variable dynamics are derived. The arm 

inductor assumption is justified by using the state variable 

dynamics. A criterion to determine the arm inductance value is 

given in this paper to quantify the zero voltage drop assumption. 

Simulation studies are provided to verify the state-space model 

derivation and the quantification of arm inductors. 

Keywords—Y-matrix modulation, modular multilevel converter, 

state-space model, arm inductor 

I. INTRODUCTION  

Y-Matrix Modulation (YMM) was proposed in [1] and [2]. 
This modulation utilizes the self-voltage balancing capability of 
MMC so that the conventional voltage balancing algorithm of 
MMC can be eliminated. To simplify the mathematical proof, 
the voltage drop on the arm inductor is assumed to be zero in 
[1]. This assumption indicates that the arm inductor should be 
very small. Therefore, the arm inductance needs to be 
quantified.  

In order to quantify the arm inductance, a proper MMC 
model is needed to capture the dynamics of the arm inductor 
current. Many papers have modeled MMC for different 
purposes and scenarios. For example, 

i) The MMC is modeled for external dynamics in order to 
understand the interaction between MMCs and other 
objectives (power grid, load, etc.) [3]–[5]. Normally, this 
type of model is for system level controller design.  

ii) The MMC is modeled by arm or submodules in order to 
understand the internal state variables’ dynamics [6]–[8]. 
Normally, this type of modeling serves internal state variable 
regulations. 

iii) The MMC is modeled to evaluate a specific state variable at 
steady state [9]–[11]. This type of MMC modeling loses 
most of the dynamic properties of MMC but becomes an 
effective guidance for parameter design. 

iv) The MMC is modeled for real-time simulation purpose [12]–
[14]. The existing literature proposes numerous simplified 
and computationally-efficient equivalent models for MMC 
to meet with the fast calculation needed for real-time 
simulations.  

Most of the models developed so far differ from each other 
on the basis of different assumptions and simplification. This 
makes them unsuitable for capturing the dynamics of arm 
inductor current. Wang et. [15] proposed a state-space switching 
model, which is derived from an accurate mathematical model 
without losing any characteristics of MMC. However, the aim 
of [15] is to develop a control to minimize the submodule 
capacitance and arm inductance. Therefore, the state variables 
selected in [15] are control oriented.  

This paper derives a comprehensive state-space model for an 
MMC system. With this state-space model, the dynamics of the 
self-voltage balancing of MMC system could be well captured. 
The accuracy of the state-space model is validated by comparing 
with MATLAB/Simulink simulation. Based on the state-space 
model of MMC, the time-domain analytical formulation of state 
variables is derived. The analytical solutions are used to quantify 
the arm inductance needed for the zero voltage drop assumption. 
The quantification of arm inductance is verified with simulation 
results. This paper is organized as follows. Section II reviews 
the operating principle of YMM based MMC. Section III derives 
the general state-space model of MMC. Section IV justifies the 
arm inductor assumption that guarantees the self-balancing 
capability of MMC. Section V provides some simulation results 
to verify the state-space model and the quantification of arm 
inductance.  

II. REVIEW OF Y MATRIX MODULATION 

An N-level MMC is shown in Fig. 1. An N-level MMC 
contains N – 1 submodules in the upper arm and N – 1 
submodules in the lower arm. For an N-level MMC, there are N 
– 1, and only N – 1, out of 2N – 2 submodules in insertion mode 
(current passes through capacitor) at all times. The other N – 1 
submodules are at bypass mode meanwhile. Therefore, there are 



N possible levels for pole voltage va. The numbering of levels in 
an N-level MMC is shown in Fig. 2. 

Define Y(N) to be the N-level MMC submodule pattern space. 
Define a space 𝕟 s.t. 𝕟 ⊆  ℤ ∩ [1, 𝑁]. ℤ  is the set of all integers 

(𝐘𝑛
(𝑁)

)
𝑖×𝑗

⊂ 𝐘 is the n-th level submodule pattern space, where   

 𝑖 = (
𝑛 − 1
𝑁 − 2

) ∙ (
𝑁 − 𝑛 − 1

𝑁 − 2
) , 𝑗 = 2𝑁 − 2 ∀𝑛 ∈ 𝕟.  (1) 

Ref [1] proves that  

 ∃(𝐘̂𝑛
(𝑁)

)
𝑘×𝑗

⊂ 𝐘𝑛
(𝑁)

  (2) 

s.t. 

  𝑘 = 2𝑁 − 3 ∩   𝑟𝑎𝑛𝑘 [
𝐘̂𝑛

(𝑁)

𝐘̂𝑛+1
(𝑁) ] = 𝑗 ∀𝑛 ∈ 𝕟 ∩ 𝑛 ≠ 𝑁. (3) 

MMC achieves self-balancing when it exhausts the 

submodule pattern space [(𝐘̂𝑛
(𝑁)

)
T

(𝐘̂𝑛+1
(𝑁)

)
T
]
T

.  

In order to exhaust the submodule pattern space, the Y-

matrix pointer 𝑓: 𝕟 → 𝐘̂𝑛
(𝑁)

 rotates within a submodule pattern 

space 𝐘̂𝑛
(𝑁)

 when level pointer  𝑢: ℝ → 𝕟   returns level n. f 
returns with the current switching pattern that f points to. Then, 

f is assigned to the next row vector in 𝐘̂𝑛
(𝑁)

 and waits for u 
returning to n. The YMM for N-level MMC can also be 
explained with the aid of Fig. 3.  

III. DERIVATION OF STATE-SPACE MODEL FOR Y-MATRIX 

MODULATED MMC 

Define the state variables to be 

 𝐗 =

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

⋮
𝑥2𝑁]

 
 
 
 
 

=

[
 
 
 
 
 

𝑖1
𝑖2
𝑉𝐶1

𝑉𝐶2

⋮
𝑉𝐶(2𝑁−2)]

 
 
 
 
 

. (4) 
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Fig. 1. N-level MMC circuit. 
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Fig. 2. Numbering of levels in an N-level MMC, when (a) N is an odd 
number; and (b) N is an even number [1]. 
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1
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⋅ (
1
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) 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 

2𝑁×2𝑁

 (6) 

where ym is an element of the switching pattern 𝐘̂(𝑁). 
. 

 



The state equation is as follows, 

 𝐗̇ = 𝐀 ⋅ 𝐗 + 𝐁 ⋅ 𝐔, (5) 
where A is shown in (6), and  

 𝐁 =

[
 
 
 
 
 
 

1

2𝐿

1

2
1

2𝐿
−

1

2

0 0
0 0
⋮ ⋮
0 0 ]

 
 
 
 
 
 

2𝑁×2

, (7) 

 

 𝐔 = [
𝑉𝑑𝑐
𝑑𝑖𝑠

𝑑𝑡

]. (8) 

 
The coefficient matrix could be decomposed as follows, 

 𝐀 = [
𝐀𝑅 𝐀𝐿

𝐀𝐶 𝟎
]. (9) 

where 

 𝐀𝐿 = [
−

1

2𝐿

−
1

2𝐿

] ⋅ [𝑦1 𝑦2 ⋯ 𝑦2𝑁−2] = 𝐀̂𝐿 ⋅ 𝐘𝑦
(𝑁)

. (10) 

 𝐀𝐶 = [𝐀̂𝐶 𝐀̅𝐶]. (11) 

  

𝐀̂𝐶 = 𝑑𝑖𝑎𝑔

(

 
 
 
 
 
 

[
 
 
 
 
 
 
 

1

𝐶1

⋮
1

𝐶𝑁−1

0
⋮
0 ]

 
 
 
 
 
 
 

(2𝑁−2)×1

⋅ [𝑦1 𝑦2 ⋯ 𝑦2𝑁−2]

)

 
 
 
 
 
 

 

 = 𝑑𝑖𝑎𝑔(𝐀̂′𝐶 ⋅ 𝐘𝑦
(𝑁)

). (12) 

𝐀̅𝐶 = 𝑑𝑖𝑎𝑔

(

 
 
 
 
 
 

[
 
 
 
 
 
 
 

0
⋮
0
1

𝐶𝑁

⋮
1

𝐶2𝑁−2]
 
 
 
 
 
 
 

(2𝑁−2)×1

⋅ [𝑦1 𝑦2 ⋯ 𝑦2𝑁−2]

)

 
 
 
 
 
 

 

 = 𝑑𝑖𝑎𝑔(𝐀̅′𝐶 ⋅ 𝐘𝑦
(𝑁)

). (13) 

diag returns with a column vector of the main diagonal elements 

of the objective matrix. 𝐀̂𝐿 contains the parameters from arm 

inductance. 

 𝐀̂′𝐶  and 𝐀̅′𝐶  contain the parameters from submodule 

capacitance. 𝐀̂′𝐶  contain the parameters from upper arm 

submodules. 𝐀̅′𝐶  contains the parameters from lower arm 

submodules. R is the arm equivalent resistance. L is the arm 

inductance. 

Note that U contains 𝑑𝑖𝑠/𝑑𝑡, which is proportional to the 

voltage across the load inductor.  

 𝐿𝑎
𝑑𝑖𝑠

𝑑𝑡
= 𝑣𝑎 − 𝑉𝑠, (14) 

which is modeled in Fig. 4. 

Replacing the 𝑑𝑖𝑠/𝑑𝑡 in (8) by (14) yields 

 𝐔 = [
𝑉𝑑𝑐

1

𝐿𝑎
(𝑣𝑎 − 𝑉𝑠)

]. (15) 

IV. ARM INDUCTOR ASSUMPTION AND QUANTIFICATION 

The transient component should be damped to zero if 
resistance R exists in the circuit. In a real MMC prototype, the 
switching loss and conduction loss is unavoidable. YMM-based 
MMC operates at high switching frequency for all submodules. 
Therefore, 2-4% power loss exists, and this power loss can be 
modeled by resistance.  

 In order to assume the inductor voltage to be zero, the 
transient needs to be damped within the switching period Tsw. 
From (6), the damping time constant of the transient, which is 
located at the top left corner of the matrix, is  

 𝜏 = 2 𝐿 𝑅⁄  (16) 
where R is the equivalent converter loss. Therefore, τ < Tsw is the 
condition to ensure that the arm inductor assumption holds. 

When L is small, e.g., zero, then the above condition will 
automatically hold, and at each switching instant, charging 
balance occurs.  However, the charging and discharging current 
would be inrush (or impulse) current that may not be good for 
devices and cause a fault.  Then in order to limit inrush 
charging/discharging current, we have to have a minimum 
inductance to make sure the inrush charging/discharging current 
is below 2 times rated load current.  
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Fig. 3. Y-matrix modulation for N-level MMC [2]. 
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Fig. 4. Load inductor voltage modeling. 

 



V. CASE STUDY 

A. State-Space Model Verification 

To verify the state-space model derivation, the differential 
equation (5) of the state-space model is discretized as follows, 

 𝑑𝐗 = 𝐀 ⋅ 𝐗 ⋅ 𝑑𝑡 + 𝐁 ⋅ 𝐔 ⋅ 𝑑𝑡, (17) 

 𝐗(𝑘) = 𝐀(𝑘 − 1) ⋅ 𝐗(𝑘 − 1) ⋅ 𝛥𝑇 + 

 𝐁 ⋅ 𝐔(𝑘 − 1) ⋅ 𝛥𝑇 + 𝐗(𝑘 − 1), (18) 
The system matrix A is a function of submodule patterns. 

The submodule pattern space of this paper follows the one 
discussed in [2].  

A simulation of a single-phase eleven-level MMC model in 
MATLAB/Simulink is conducted in comparison with the state-
space model. The simulation circuit is shown in Fig. 5. The key 
parameters of the system are summarized in Table I. Ideal 
switches, inductors, and capacitors with no parasitic parameters 
as well as ideal voltage sources were used. Any controller delays 
are not included in the model. In the simulation setup, discrete-
Tustin/Backward Euler (TBE) with a sample time of 0.167 μs is 
selected. The initial values of capacitor voltages are 1000 V. In 
Simulink, the MMC inductor currents are dependent states, and 
therefore, the initial values of the inductor current are 
determined by MATLAB/Simulink.  

The comparison results are shown in Fig. 6. It shows the 
Simulink simulation along with the state-space model in four 
fundamental cycles. The proposed state-space model matches 
with the simulation. This indicates that the mathematical 
derivation of the proposed model is correct.  

TABLE I.  11-LEVEL MMC STATE-SPACE MODEL AND SIMULATION.  

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 60 kHz 

DC-Bus Voltage, Vdc 10 kV 

Load Resistance, Rload 62 Ω  

Line Inductance, Lline 1 mH    

Arm Inductance, Larm 0.1 µH  

Stray Resistance, Rstray 0.2 Ω    

Submodule Capacitance, Ci 770 µF  

Number of Submodules per Arm 10 

  where i = 1, 2, …, 20. 

TABLE II.   3-LEVEL MMC ARM INDUCTOR JUSTIFICATION SIMULATION. 

Apparent Power, S 100 kVA 

Fundamental Frequency, f0 60 Hz 

Switching Frequency, fsw 5 kHz 

DC-Bus Voltage, Vdc 2000 V 

Phase Voltage, Va, Vb, Vc 643 V 

Line Current, Ia, Ib, Ic 52 A 

Load Resistance, Rload 12.4 Ω  

Line Inductance, Lline 4 mH    

Sub-Module Capacitance, Ci 85 µF    

Number of Sub-Modules per Arm 2 

  where i = 1, 2, …, 12. 

TABLE III.   MMC ARM INDUCTOR PARAMETERS. 

 Arm Inductance, L Equivalent Resistance, R 

τ / Tsw = 0.25 10 µH 0.4 Ω (3.2% p.u.) 

τ / Tsw = 1 40 µH 0.4 Ω (3.2% p.u.) 

τ / Tsw = 10 400 µH 0.4 Ω (3.2% p.u.) 
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Fig. 5. Eleven-level single-phase MMC circuit for state-space model 
study. 
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Fig. 6. Comparison of simulation and state-space model. (a) Upper arm 

current; (b) lower arm current; (c) capacitor voltage VC10; (d) capacitor 
voltage VC11. 

 



B. Arm Inductance Verification 

In this Section, several simulations with various arm 
inductances are examined to verify the analysis in Section IV. 
The simulation topology is shown in Fig. 7. The key parameters 
of the MMC are summarized in Table II. The time constants and 
the corresponding inductor value of the cases under study in this 
Section are summarized in Table III.  

Three sets of arm inductors and time constants are tested in 
the simulation. Fig. 8 shows the output voltage of MMC with 
respect to different arm inductance. Fig. 9 shows the capacitor 
voltage of MMC with respect to different arm inductance. Fig. 
10 shows the arm inductor current of MMC with respect to 
different arm inductance. Fig. 8(a), Fig. 9(a) and Fig. 10(a) show 
the first case, which is τ / Tsw = 0.25. The zero voltage drop 
assumption holds in these cases. The output voltage has less 
distortion. The capacitor voltage is well balanced. The capacitor 
voltage ripple is well constrained. The arm inductor current is 
limited within 2 times the load current. Fig. 8(b), Fig. 9(b) and 
Fig. 10(b) show the second case, which is τ / Tsw = 1. This case 
is at the boundary of analysis in Section IV. The output voltage 
has relatively larger distortion compared to the first case. The 
capacitor voltage is still balanced. The capacitor voltage ripple 

increases to ± 20% which is normally regarded as at the 

boundary of normal and abnormal operation. The arm inductor 
current is limited within 2 times the load current as well. Fig. 
8(c), Fig. 9(c) and Fig. 10(c) show the third case simulation, 
which is τ / Tsw = 10. This case is out of the time constant range 
from Section IV. The output voltage has more distortion 
compared to Fig. 8(a) and (b). The capacitor voltage diverges 

from the 1000-V nominal value. The zero voltage drop 
assumption does not hold in this case. MMC falls into the 
abnormal operation. These three cases verify that the arm 
inductor assumption justification in Section IV.  
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Fig. 7. Three-level MMC simulation topology. 
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Fig. 8. Three-level MMC load voltage. (a) τ / Tsw = 0.25; (b) τ / Tsw = 1 and 

(c) τ / Tsw = 10. 

 
(c) 

Fig. 9. Submodule capacitor voltage. (a) τ / Tsw = 0.25; (b) τ / Tsw = 1 and (c) 
τ / Tsw = 10. 

 



VI. CONCLUSION 

This paper quantitively justifies the arm inductance value to 
guarantee the voltage drop assumption for YMM based MMC. 
This paper first derives the general state space model for MMC 
dynamics. Then the arm inductor value constraint is derived 
based on the state space model. The derivation shows that the 
zero voltage drop assumption holds when the time constant τ = 
2L/R < Tsw. This criterion is validated by simulation study. The 
simulation results show that the waveform distortion increases 
when τ passes this constraint. A case with τ = 10 shows that the 
capacitor voltages diverge in this condition. 
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Fig. 10. Upper arm current. (a) τ / Tsw = 0.25; (b) τ / Tsw = 1 and (c) τ / Tsw 

= 10. 
 


