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Abstract Combined emission economic dispatch with the effective 
integration of renewable energy sources for a power system is a 
unique problem with various challenges. The increasing 
integration into the power grid of renewable energy sources (RES), 
such as wind and solar, is becoming more prevalent and this trend 
is expected to continue. However, the intermittent behaviour of 
these renewable energy sources poses a significant challenge for 
power systems in terms of dispatchability and the ability to 
maintain stable grid operation. We propose and implement a 
particle swarm optimization (PSO) based technique to control 
each independent region of a power system. The PSO control 
strategy will coordinate and schedule the renewable energy 
resources (wind and solar) and conventional generators for each 
region. A cost function is optimized, and the operating cost for the 
power system is calculated based on the fitness of each particle. All
proposed strategies and algorithms are implemented using 
MATLAB and validated using the IEEE-39 bus system model. 

Index Terms  Wind and solar integration in grid, Particle 
swarm Optimization, Renewable energy sources, optimized cost 
function. 

I. INTRODUCTION

In modern world the maximum reliability is still on
fossil fuel resources such as coal, natural gas, and petroleum
fuels, with these resources being the majority of the electrical
energy production. Electrical energy has played a positive role
in global change, but it also has a negative impact since it is the
dominant source for local air pollution. The usage of these fossil
fuel resources is causing a threat to the environment by
increasing carbon dioxide emissions. The emissions from the
fossil resources in the generation of electrical energy, which
accounts for 63% of the total U.S electrical generation, have
been held responsible for 99% of CO2 emission in 2018 [2].
The adverse effects of fossil fuel resources and scarcity have
driven the need for renewable energy resources such as wind
and solar, which are the best available resources. Solar
contributed about 13.3% and wind about 36.8% of the total
renewable production [5]. These two renewable resources play
a vital role in reducing the dependency of fossil fuel resources
for the generation of electrical energy. Wind plants are clean
and cost-effective sources of renewable energy by reducing the
greenhouse gases by 14% [4].  

The integration of renewable energy sources into the
system results in variability in active and reactive power

support, which can result in instability in the power grid and
requires a high ramp rate backup system [6-8]. The high
penetration of renewable energy resources also impacts the
adequate scheduling of generators [16]. In the past few years,
the use of particle swarm optimization has evolved
considerably after it was proposed by Kennedy and Eberhart [9]
in 1995. Optimization algorithms using a random search space
algorithm like ant colony optimization, artificial fish swarm
algorithm, free search algorithm, and particle swarm
optimization has been used by researchers. Researchers have
started using particle swarm intelligence in many of the
engineering applications [10] of complex problems because of
its advantages [13-14] such as fast convergence, limited
parameter inputs and simple principle. Wind and solar plants
provide the limited capability of reactive power support, results
in less voltage stability support in comparison to conventional
plants [15]. However, adequate reactive power support is
needed for wind power with long transmission lines which is
often available far from load centers for reliable power transfer
[1]. The problem of reliable power supply from wind power
plants has been explained using a game-theoretic approach in
[18]. An artificial bee colony approach has been proposed to
minimize the cost of the system on two test cases with the
addition of thermal units [19]. PSO has been used in different
real time application scenarios like for vehicle collision [21]
and design of water supply systems [20]. 
The main contribution of this paper is to develop a new
approach for combined emission economic dispatch using
a PSO based control of the power generators for the purpose of
reducing intermittency of the variable wind and solar plants
without a battery energy storage system and reactive power
compensation. We analyse the cases in which the conventional
and renewable energy sources are in a random search space
where the strategy is to minimize the usage of fossil resources
and maximize the use of renewable energy. With different
combinations of voltage set points between the sources, the
swarm with the best candidate solutions, which reduces the real
power losses and maintains the voltage of the load buses is
selected. We assume that wind and solar power are supplied in
the system instantaneously as produced, and the rest of the
demand is met by the conventional energy plants. In this work,
we introduce variable wind and solar penetration from three
different months for creating different load conditions in the
PSO based algorithm.  



The outline of the paper is as follows: Section II presents 
the problem formulation. In section III, the solution approach 
based on Particle swarm optimization is explained.  Simulation 
results are presented in Section IV, and Section V concludes the 
paper with a discussion. 

II. PROBLEM FORMULATION

The problem addressed in this paper is a combined 
emission economic dispatch optimization problem to minimize 
the total cost of the power system with integrating renewable 
energy sources in the system while maintaining system 
stability, load bus voltage and power flow constraints. The 
CEEDS optimization problem is as follows,

                (1)

where are the fuel and emission cost for the 
generator n and 

The objective cost function:

Where: , is output from conventional generator, 

wind and solar respectively and , , are the fuel and 
emission cost function, , are penalty factor and power 
line losses respectively.

Equality constraints: The active power flow and 
reactive power flow in all branches of the network must 
satisfy equations (2) and (3), for power balance.

(3)
           (4)

where, and are conductance and 
susceptance of element of the bus admittance matrix. 
is the bus voltage angle difference between and .

Inequality constraints: The inequalities that all power
system components must operate within are their minimum and 
maximum limits are as follows:

                         (5)
                         (6)

where, .The superscripts and above 
denote the minimum and maximum limits of the variables.

The real power loss in a distribution line connecting two 
neighbouring buses and can be computed as,

                      (7)

Where, Rn is the resistance of line and Pn is the power flowing 
through that line.
The total real power loss of a system, , can then be 
calculated by taking the sum of losses of all distribution line
using,

                         (8)

III. SOLUTION APPROACH

A. Background of Particle Swarm Optimization
Particle Swarm optimization is the concept of mutual

behavior of social animals such as birds, ants, and bees, which
is developed to study the distributive behavior of the multi-
players of intelligence in a system. It was introduced in the area
of artificial intelligence for solving problems using swarm
intelligence which mainly overcomes the barrier of centralized
control. In PSO, the problem is solved by passing information
within the swarm to reach the optimization goal [16]. It is also
regarded as a computational algorithm that iteratively solves the
problem by moving the particles of a population (i.e. Swarm) in
a random but bounded search space with some initial
information.  
 

A PSO algorithm consists of a population P with x number of
particles. Population P is also known as a set of candidate
solutions. In PSO, each particle is called a candidate solution.  

P=[p1,p2,p3, ......,px] (9)

where p1, p2 are different particles in the population.
These particles move around a search space D with an initial 
position po(t).

px= [po,po1,po2 , ...... ,pmD]      (10)

Each particle in the swarm moves from its initial position with 
a particular velocity vo(t) in the search space in a particular 
direction (space trajectory). The motion of the particle is based
on the equation below:

px(t+1)={px(t)+vx(t+1)} (11)

where px, vx defines the position and velocity of particle 
respectively for two successive time iterations defined by t and 
t+1.

The velocity of the particle is defined by the following 
equation:

vx(t+1)=vo(t) + w1(PBx-px(t))*A1 + w2(GB-px(t))*A2 (12)

Where PBx is the personal best of particle n and GB is the global 
best of the swarm. w1 and w2 are defined as acceleration 
coefficients which controls the steps taken by the particles in 
the space usually ranging between 0 to 4. A1 and A2 are the 
diagonal matrix of random generated numbers, which are 
known as weight inertia.



B. Simulation Setup
The test system is decentralized into three individual areas.

Power flow data for these areas is obtained from the 
MATPOWER [17] program. Depending on the flow between 
areas, tie line buses are defined as either load bus or generator 
bus. The highest capacity generator bus is considered the slack 
bus. Each decentralized area has a slack bus. 

Figure 1: IEEE 39 bus system decentralized into three areas.

Each of the individual areas consist of conventional 
sources, solar plants, wind plants, and variable loads. For the 
integration of renewables, the most sensitive bus is selected 
using Q-V sensitivity analysis. The conventional generators 
and renewable generators are scheduled to meet the load 
demand.

C. PSO Control Strategy Formulation
The PSO algorithm is developed in each of the

decentralized control regions in the system. The conventional 
and renewable generator sources are considered as particles,
and the voltage set points been considered as velocity. Each 
particle initial position is set based on the minimum generator 
supply rating. A PSO algorithm is applied to find the best 
solution set points which would reduce the overall cost of the 
decentralized system and also minimize the real power loss. 
The flow chart of the PSO algorithm is shown in Figure 2.

Figure 2: Flow chart PSO based control algorithm

Particles: In each area, conventional ,

wind generators and solar generators 

are considered as particles.
Velocity: The voltage set points of generators including the 

renewables in each area , is defined by generator voltage set 

points . The voltage set points is assigned to 
each particle randomly by PSO within the range of

.
Fitness Evaluation: The constraints have been set for 

conventional generators, wind, and solar generators. Thus, if 
the constraints are violated then a penalty is applied to the cost 
function.  

C =                                       (12)

Pen(k)=M * C                                               (13)
Fitness(k)=(C(k)+Pen(k))                                             (14)

where C is the constraints for each conventional, wind
and solar generator. Pen(k) and Fitness(k) are penalty and 
fitness at k-th time-interval.
[M , ] is the max fuel cost per unit and total demand.



IV. SIMULATION RESULTS

In this section, simulation results are presented with the
application of the PSO algorithm concept to the IEEE 39 bus 
test system. The system has 10 generator buses, 29 load buses, 
46 transmission lines and 12 transformers. Bus 31 is the slack 
bus in the centralized case. The resulting cost of operation is 
obtained using PSO algorithm which is implemented in 
MATLAB (using the MATPOWER toolbox [17]). Wind buses 
of three decentralized areas are 2, 16, and 6, and solar buses of 
the areas are 18, 19, and 7. Figure 1 demonstrates the 
decentralized test case with indications of wind and solar buses. 
Historical wind data was obtained from Bonneville Power 
Administration from three different months January, March and 
June for the three areas. Solar data was obtained from National 
Renewable Energy Laboratory historical data file from three 
months March, July and November. Figure 3 shows the wind 
and solar for 24-hours. Simulations were run for a 24-hour 
period with t=5-minute step. 

Figure 3: Wind and Solar for whole system in 5 minute interval

A comparison of real power losses in the areas is shown 
between the PSO algorithm and base cases in Figures 4, 5, 
and 6. A significant (22%) amount of real power loss was 
observed, which also indicates the same amount of increase in 
the spinning reserve of the overall system. The simulations 
were run for the voltage set points range . Table II illustrates 
that the algorithm maintaining the voltage at each load bus in 
the desirable range. Figure 2 demonstrates the algorithm flow 
to reach the optimization goal. Figure 7 shows the comparison 
of the cost between the PSO and base 
case.

Figure 4: Comparison of real power loss with and without algorithm

Figure 5: Comparison of real power loss in area-2 with and without algorithm

Figure 6: Comparison of real power loss in area-3 with and without algorithm

Figure 7: Comparison of Cost of Area-1 with and without algorithm

TABLE I
OBJECTIVE FUNCTIONS COMPARISON

Base Case PSO Loss Reduction %

Real loss
in system

14249.7 11020.9 3228.8 22.65



TABLE II

LOAD BUS VOLTAGE COMPARISON

Load 
Bus 
number

Voltage set points 
Optimal Case

Voltage Set points 
Base Case

1 0.987746639562672 0.988548934208684

3 0.988169214402658 0.990573506435293

17 0.997492719501569 1.00385133115896

25 0.984450671053609 1.02377433822331

26 1.00289006966437 1.02766797439045

27 0.994398983830113 1.01064293021919

28 1.01476362496072 1.03749241941639

29 1.01828400688490 1.04127813623869

V. CONCLUSION

In this paper, a combined emission economic dispatch
problem was solved with effective integration of intermittent 
renewable energy sources via a PSO based control algorithm 
while maintaining system constraints and stability. Simulation 
results were compared between before and after application of 
algorithm. The algorithm was able to find best solution set 
points to minimize the overall cost for each time period and all 
penetration conditions, while three different wind and solar
conditions were created in the IEEE 39 bus system for validity 
of the algorithm. The voltage at all load buses was also 
maintained within a desirable range. Overall, the simulation 
results look significantly good for pre-scheduling bus voltage 
set points of the generators to reduce the fluctuations in the grid 
induced by variable loads and renewables. Our results imply
that the PSO-based algorithm is able to minimize system cost 
and reduce real power losses to improve benefits. The results 
are limited to decentralized test scenario while better result 
might be obtained through distributed cooperative test case 
between areas with tie-line power flows and integration of 
battery energy storage system at different nodes. 
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