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Abstract—In power electronics-based power systems (PEPSs),  

small-signal stability is an important factor for system design and 

operation, where the impedance-based approach is often used.  

However, unlike small-scale PEPSs with simple and 

straightforward impedance models, it would take much more 

efforts to derive the large-scale PEPSs impedance model, which is 

very complicated and sometimes may get wrong results due to the 

elimination of right-half plane (RHP) poles during the impedance 

aggregation process. To simplify the derivation procedure and 

analyze the small-signal stability of large-scale PEPSs, this paper 
proposes a nodal admittance matrix (NAM) based area partition 

method. In this method, the large-scale PEPS is divided into 

several sub-areas, and the stability is analyzed within the sub-area 

first, and then the interconnection stability among these sub-areas 

is analyzed. The proposed method is scalable and can help to locate 

the weakest areas/converters that may cause instability in the 

whole system. In this paper, the concept of the proposed method 

and its application to an example system are introduced. 

Experimental results are also given to validate the effectiveness of 

the proposed method. 

Keywords—small-signal stability, nodal admittance matrix, area 

partition, power electronics-based power systems, large-scale 

I. INTRODUCTION  

Modern power systems are integrating more and more 
renewable generations and modern power-electronics interfaced 
loads, which lead to the increasing penetration level of power 
electronics converters [1-3]. In power electronics-based power 
systems, small-signal stability issues across a wide frequency 
range due to the impedance interactions among converters are 
concerned. Especially when it comes to large-scale PEPSs, 
practical methods to predict the system's small-signal stability 
are needed [4]. Typically, there are two types of approaches to 
analyze the small-signal stability of PEPSs [5]: the state-space 
model and the impedance model. The state-space approach 
requires detailed information of all system components. The 
impedance-based approach, on the other hand, uses terminal 
characteristics to analyze the stability, and does not require 
detailed internal control and system information of the 
converters. Thus, the impedance-based approach is adopted here 
for the small-signal stability analysis of large-scale PEPSs. 

When using impedance-based approaches to analyze small-
signal stability, there are mainly three types of criteria [6]: the 
generalized Nyquist criterion (GNC)-based, the loop impedance 
model (LIM)-based, and the Nodal admittance matrix (NAM)-
based criteria . The GNC-based criterion is sensitive to the 
partition points, which may result in contradictory analysis 
results [7]. Also, both GNC-based and LIM-based criteria may 
have the pole-zero cancellation issue when performing the 
impedance aggregation [8] and thus would lead to inaccurate 
prediction results. The NAM-based criterion, on the contrary, 
preserves the system structure by using the admittance matrix 
and thus having fewer restrictions compared to the other two 
criteria. Therefore, the NAM-based criterion is preferred for the 
small-signal stability prediction of large-scale systems. 
However, in the existing works, when applying the NAM-based 
criterion, the admittance matrix is normally directly derived for 
the entire system [6, 9, 10]. It is not easy to be applied with the 
increasing system size since the dimension of the matrices is 
related to the number of converters in the system. The larger the 
system is, the larger and more complex the impedance matrix 
will be. Moreover, if the contingencies are considered, e.g., 
disconnection of some converters, the whole impedance matrix 
will need to be derived again from scratch.  

Therefore, in this paper, an area partition method in 
combination with the NAM criterion is proposed for the small-
signal stability analysis of large-scale PEPSs. By decomposing 
the large system into several sub-areas and their interconnection 
network, the proposed method can: 1) improve the scalability of 
the NAM criterion and save efforts on deriving impedance 
matrices when the contingency is considered; 2) provide more 
information about relatively independent subareas and their 
interconnection; 3) help to identify the areas/converters that 
mainly related to system instability in large-scale systems. 

The rest of this paper is organized as follows. Section II 
explains the concept of the proposed NAM-based area partition 
method. In section III, the stability analysis of an example 
system is presented using the proposed method under different 
scenarios, together with the simulation results. Section IV 
provides the experimental results of the example system. 
Conclusions and future work are summarized in section V. 



II. CONCEPT OF THE PROPOSED NAM-BASED AREA PARTITION 

METHOD 

A. Review of the Whole System NAM Method 

When applying the NAM-based criteria for the whole 
system, a PEPS can be decomposed into individual converters 
and the passive connection network based on the component 
connection method (CCM) [9]. The overall system model is 
regarded as an equivalent multi-input multi-output (MIMO) 
negative feedback system. The closed-loop disturbance-to-
output transfer function matrix 𝐺𝑐𝑑(𝑠), is a  diagonal matrix 
composed with output impedance or admittance of each 
converter in the system. The impedance matrix model of the 
connection network 𝐺𝑛𝑤(𝑠), which also represents the output-
to-disturbance transfer function matrix, can be derived based on 
the connection network. Since all converters are designed to be 
stable individually, the system stability can then be predicted 
using the determinant of the return-difference matrix 𝐹(𝑠): 

𝐹(𝑠) = 𝐼 +𝐺𝑐𝑑(𝑠)𝐺𝑛𝑤(𝑠) (1) 

The system is stable if and only if 𝑁(0,𝑗0)(det⁡(𝐹)) is 0. In 

this method, the admittance matrices are derived directly for the 
whole system. Therefore, the dimensions of these matrices are 
directly related to the number of converters in the system. They 
will be very large matrices when applying the method to a very 
large PEPS with a large number of converters. Moreover, the 
stability of relatively independent sub-areas and their 
interactions are unclear with the single admittance matrix of the 
whole system. 

B. The Proposed NAM-Based Area Partition Method 

In the proposed method, a large-scale system is decomposed 
into 𝑚  sub-areas and the corresponding interconnection 
network, as shown in Fig. 1, where each sub-area contains 
individual converters and their connection network. Fig. 2 
shows the flow chart of the proposed method. The detailed steps 
of the proposed method are summarized as follows: 

Step 1: The available data of the target large-scale system, 
including system parameters and physical structure, should be 
collected. The steady-state operating points of the system should 
be calculated accordingly.  

Step 2: The impedance/admittance models of all system 
components (e.g., converters, transmission lines, transformers, 
loads, shunts) should be derived in 𝑑𝑞 frame.  

Step 3: The targeted system is decomposed into several sub-
areas and the corresponding interconnection network, as shown 
in Fig. 1, where each sub-area contains individual converters and 
their connection network.  

Step 4: The NAM of each sub-area should be derived, and 
the stability of each sub-area is analyzed using determinant-
based GNC with two possible results: 1) all sub-areas are stable; 
2) some sub-areas are unstable. For the first possible result, i.e., 
all sub-areas are identified to be stable, the process can then 
move to the next step. For the second possible result, i.e., one or 
more sub-areas are identified to be unstable, and converters that  

 

 

Fig. 1. Area partition of a large-scale power electronics-based power 

system. 

 

Fig. 2. Flow chart of the NAM-based area partition method. 
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are related to the instability within the unstable areas can be 
located using the participation factor (PF) matrix [11]. Then, 
each instability-related converter will be isolated from the 
original unstable sub-areas to form a new stable “sub-area” since 
each converter is designed to be stable. With the newly 
decomposed single-converter areas, the possible result 2) is 
updated to be the possible result 1). 

Step 5: When all sub-areas are stable, the equivalent 
impedance matrix of each sub-area seeing from interconnected 

nodes will be derived. The NAM of the 𝑖𝑡ℎ sub-area, 𝑌𝑎𝑟𝑒𝑎_𝑖, 
which includes closed-loop output admittances of all converters 
within that sub-area, is calculated first. Then, the impedance 

matrix 𝑍𝑎𝑟𝑒𝑎_𝑖 of the sub-area is derived by inverting 𝑌𝑎𝑟𝑒𝑎_𝑖 as 
in (2), where 𝑘 is the number of buses in that sub-area. With this, 
the equivalent impedance matrix 𝑍𝑎𝑟𝑒𝑎_𝑒𝑞_𝑖 can be derived by 

extracting elements of the columns and rows which correspond 
to the interconnected nodes. After getting the equivalent 
impedance matrices of all 𝑚 sub-areas, the overall equivalent 
impedance matrix of the interconnected system 𝑍𝑎𝑟𝑒𝑎_𝑒𝑞 as in 

(3).  

𝑍𝑎𝑟𝑒𝑎_𝑖 =𝑌𝑎𝑟𝑒𝑎_𝑖
−1 = [

𝑍11 ⋯ 𝑍1𝑘
⋮ ⋱ ⋮
𝑍𝑘1 ⋯ 𝑍𝑘𝑘

] (2) 

𝑍𝑎𝑟𝑒𝑎_𝑒𝑞 = diag[𝑍𝑎𝑟𝑒𝑎_𝑒𝑞_1, 𝑍𝑎𝑟𝑒𝑎_𝑒𝑞_2 ,⋯ , 𝑍𝑎𝑟𝑒𝑎_𝑒𝑞_𝑚] (3) 

Step 6: The admittance matrix of the interconnection 
network 𝑌𝑖𝑛𝑡  can be derived according to the interconnection 
structure. Then, the stability of the whole interconnected system 
can be analyzed using the Nyquist diagrams or the bode plots of 

det(𝐼 + 𝑍𝑎𝑟𝑒𝑎_𝑒𝑞𝑌𝑖𝑛𝑡). If the interconnection is stable, the whole 

system will be stable. If the interconnection is unstable, the PF 
matrix can be applied and used to locate the sub-areas (the 
interconnection nodes) that are related to instability. Note that 
either in each sub-area or in the interconnection network, buses 
without connected converters can be eliminated using Kron 
reduction [12].  

The proposed NAM-based area partition method provides 
several advantages compared to the whole system NAM 
method. First, it is more scalable and flexible, e.g., when the 
system topology is reconfigured, only matrices of related sub-
areas need to be updated, instead of the large entire system 
matrix. Second, it provides more stability-related information 
about the areas and the interconnection lines, i.e., the stability of 
each control area can be obtained. Third, it helps to save efforts 
on identifying the weakest point or locating system-instability-
related converters using an area-based low-dimension matrix, 
instead of an entire system-based high-dimension matrix. 

III. CASE INVESTIGATION 

A. System Description 

To investigate the effectiveness of the proposed NAM-based 
area partition method, a 6-converter system is adopted as an 
example case. Fig. 3(a) shows the circuit diagram of the example 
system, where 𝐺11 , 𝐺12 , 𝐺21 , and 𝐺22  are four voltage-
controlled converters with current feedforward control, while 
𝐺13 and 𝐺23 are two current-controlled converters with voltage 

feedforward control. According to the proposed method, the 
example system is decomposed into 2 sub-areas with an 
interconnection line first, as shown in Fig. 3(b) under three 
different cases. In both case I and case II, the interconnection 
line is connected between bus 11 and bus 21; while in case III, 
the interconnection line is changed to connect bus 12 and bus 
23. Detailed parameters of this 6-converter system are listed in 
TABLE I.  
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Fig. 3. (a) the example 6-converter system; (b) area partition of the case I, 

II, and III 

TABLE I.  ELECTRICAL PARAMETERS OF THE SIX-CONVERTER SYSTEM 

Electrical Parameters Values 

AC voltage base 𝑉𝑏𝑎𝑠𝑒  50⁡V 

AC power base 𝑆𝑏𝑎𝑠𝑒  1302⁡VA 

Fundamental frequency 𝜔𝑓  2𝜋 × 60⁡rad/s 

Line impedances 

𝐿1, 𝑅1  2.45⁡mH,0.12⁡Ω 

𝐿2 , 𝑅2 1.2⁡mH,0.04⁡Ω 

𝐿3 , 𝑅3 0.7⁡mH, 0.035⁡Ω 

𝐿4 , 𝑅4 10.7⁡mH,0.65⁡Ω 

𝐿5 , 𝑅5 2.5⁡mH,0.12⁡Ω 

𝐿6 , 𝑅6 0.7⁡mH,0.04⁡Ω 

𝐿7 , 𝑅7 0.7⁡mH, 0.035⁡Ω 



TABLE II.  PARAMETERS OF CONVERTERS 

Electrical Parameters Values 

𝐿 filter 𝐿𝑓 , 𝑅𝑓  0.575⁡mH,0.2⁡Ω 

DC voltage 𝑉𝑑𝑐 200⁡V 

Switching frequency 𝑓𝑠𝑤  10⁡kHz 

Voltage-Controlled Converters Values 

PI voltage controller 𝐾𝑣𝑝, 𝐾𝑣𝑖  1.04,325 

Voltage measurement filter 𝜔𝑓𝑣  2𝜋 × 300⁡rad/s 

Current measurement filter 𝜔𝑓𝑐  2𝜋 × 1000⁡rad/s 

Current-Controlled Converters Values 

PLL PI parameters 𝐾𝑝𝑙𝑙𝑝, 𝐾𝑝𝑙𝑙𝑖 1.06,18 

PI current controller 𝐾𝑖𝑝, 𝐾𝑖𝑖  2.6,2275 

Voltage feed-forward gain 𝜔𝑓𝑓𝑣  2𝜋 × 200⁡rad/s 

B. Impedance/admittance models of system components 

To analyze the example scale-down system, the 𝑑𝑞 
impedance models of all system components, including 
transmission lines, voltage-controlled converters, and current-
controlled converters, need to be derived first. The 𝑑𝑞 
impedance and admittance of each transmission line can be 
modeled as: 

𝑍𝑇𝐿 = [
𝑅 + 𝑠𝐿 −𝜔𝑓𝐿

𝜔𝑓𝐿 𝑅 + 𝑠𝐿
], 𝑌𝑇𝐿 = 𝑍𝑇𝐿

−1 (4) 

where 𝑅 and 𝐿  are the resistance and the inductance of each 
transmission line, respectively. 

The 𝑑𝑞 impedance and admittance of voltage-controlled and 
current-controlled converters can be modeled as follows [13]. 
For the voltage-controlled converters, the 𝑑𝑞 output impedance 
model is: 

𝑍𝑜𝑣 =𝑇𝜃
−1(𝐼+𝐺𝑣𝑜𝐺𝑑𝐺𝑣𝐺𝑓𝑣𝐺𝑠𝑣)

−1
× 

[𝑍𝑜−𝐺𝑣𝑜𝐺𝑑(𝐺𝑓𝑓𝑐𝐺𝑓𝑐+𝐺𝑣𝑑𝑒𝑐)𝐺𝑠𝑐]𝑇𝜃 
(5) 

where 𝑇𝜃 is the transformation matrix between two 𝑑𝑞 frames; 
𝑍𝑜 and 𝐺𝑣𝑜 represents the output filter; 𝐺𝑣 represents the voltage 
PI controller; 𝐺𝑑 represents the delay component;⁡𝐺𝑣𝑑𝑒𝑐 is the 
decoupling term; 𝐺𝑠𝑣 and 𝐺𝑠𝑐 are transfer function matrices for 
voltage and current measurement; 𝐺𝑓𝑣 , 𝐺𝑓𝑐 , and 𝐺𝑓𝑓𝑐  are the 

voltage filter, current filter, and current feed-forward gain, 
respectively. 

For the current-controlled converters, the 𝑑𝑞  output 
admittance model is: 

𝑌𝑜𝑐 = [𝐼+𝑌𝑜𝐺𝑑𝑇𝜃
−1(𝐺𝑐−𝐺𝑐𝑑𝑒𝑐)𝑇𝜃𝐺𝑠𝑐 ]

−1𝑌𝑜× 

{𝐼− 𝐺𝑑𝑇𝜃
−1[𝐺𝑓𝑓𝑣𝐺𝑣𝑡 − (𝐺𝑐−𝐺𝑐𝑑𝑒𝑐)𝐺𝑖−𝐺𝑣𝑐 ]𝑇𝜃𝐺𝑠𝑣} 

(6) 

where 𝑌𝑜  is the admittance matrix of the output filter; 𝐺𝑐 
represents the current PI controller; 𝐺𝑐𝑑𝑒𝑐  is the decoupling 
term; 𝐺𝑓𝑓𝑣  is the voltage feed-forward gain; 𝐺𝑣𝑡 , 𝐺𝑖, and 𝐺𝑣𝑐 

represent the PLL impact. Definitions of  𝑇𝜃, 𝐺𝑑, 𝐺𝑠𝑐, and 𝐺𝑠𝑣 
are the same as in (5). 

C. Analytical results 

To verify the proposed method, three different cases of the 
example system are analyzed. In case I, the system is stable with 
a reference design shown in TABLE I and TABLE II. In both 
case II and III, the cutoff frequency of voltage feedforward 
control of 𝐺23  is increased from 2𝜋× 200⁡rad/s  to 2𝜋×
1000⁡rad/s. Also, the interconnection Line 7 is changed to 
connect Bus 12 and Bus 23 in case III. Fig. 4 shows the Bode 
diagrams of analysis results for the six-converter system using 
the proposed method. When analyzing the stability of the 
system, the Bode diagram is a better way considering the large 

magnitude variation in the Nyquist diagram, and 180° decrease 
of phase angle in the Bode diagram represents that the origin 
point (0,𝑗0) is encircled once in the clockwise direction [9].  

 

(a) 

 

(b) 

 

(c) 

Fig. 4. Bode plots of the interconnected system: (a) case I; (b) case II; (c) 

case III. 
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In case I, both sub-area 1 and sub-area 2 are determined to 
be stable, and the interconnection of the two sub-areas is also 
predicted to be stable, as shown in Fig. 4(a), where the phase 

variation in the full positive frequency range is 0°.  

In case II, the sub-area 1 is determined to be stable, but the 
sub-area 2 is found to be unstable. Then, the absolute values of 
the PF matrix are calculated for sub-area 2 in TABLE III. Note 
that only the eigenvalues that encircle the critical point should 
be considered, which is 𝜆3 in this case, and the PF values are 
calculated at the unstable frequency. Larger PF values mean the 
corresponding converters are more relevant to the corresponding 
eigenvalues. As shown in Table III, 𝐺23 is identified as the 
system-instability-related converter. As explained in Fig. 2, 𝐺23 
will form a new sub-area, while 𝐺21 and  𝐺22 will form another 
new sub-area. The Bode diagrams of the interconnection of all 
these areas are shown in Fig. 4(b). The overall system is found 
to be unstable in this case, since the phase variation is 

−180°×2 = −360°, which means there are 2 RHP poles in 
case II. 

TABLE III.  ABSOLUTE VALUES OF PARTICIPATION FACTORS IN CASE II 

Converters 𝝀𝟑 

𝐺21  

0.0361 

0.0398 

𝐺22  
0.0770 

0.0856 

𝑮𝟐𝟑 
0.3283 

0.3641 

In case III, similar processes are done as in case II when 
analyzing the stability of the two sub-areas, and the system is 
predicted to be stable with the changed interconnection line 
compared to case II, as shown in Fig. 4(c), where the phase 

variation is 0°.  

IV. SIMULATION AND EXPERIMENTAL VERIFICATION 

To verify the results of the proposed small-signal analysis 
method, both the simulation model and the experimental 
platform of the example system are established. The same 
parameters in TABLE I and TABLE II are used in both 
simulations and experiments. 

A. Simulation Results 

A six-converter system with the same parameters in TABLE 
I and TABLE II is established in MATLAB/Simulink. Fig. 5 
shows the simulation results of the three corresponding cases as 
described in Section III. It can be found that the analytical results 
obtained by the proposed method match well with the simulation 
waveforms, where case I and III are stable, and case II is 
unstable. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Simulation waveforms of (a) case I; (b) case II; (c) case III. 

B. Experimental results 

The experimental platform is built based on the hardware 
testbed (HTB) to simulate the six-converter system, as shown in 
Fig. 6 [14, 15]. The converter cabinet in Fig. 6(a) contains the 
six converters used in the example system, while the variable 
inductor cabinet in Fig. 6(b) is used to emulate the impedance of 
the system transmission lines. 

 

(a) 

 

(b) 

Fig. 6. HTB setup: (a) converter cabinet, (b) variable inductor cabinet.  
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Fig. 7 shows the experimental waveforms in the three cases 
as described in Section III, where both case I and case III are 
stable, while case II is unstable. Hence, it can be concluded that 
the experimental results match the analytical results in section 
III-C. 
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Fig. 7. Experimental waveforms of the example system: (a) case I; (b) case 

II; (c) case III. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes a NAM-based area partition method to 
analyze the small-signal stability of large-scale PEPSs. The 
whole system is decomposed into several sub-areas, and the 
stability within each sub-area is analyzed first. Then, the small-
signal stability of the overall system is analyzed using the 
determinant-based GNC for the interconnection of all sub-areas. 

A six-converter system is used as an example system to 
demonstrate the proposed method in both simulation and 
experiment. Compared with the whole system NAM method, the 
proposed method shows improved flexibility and scalability 
under system contingency. It also provides more stability-
related information and can help to locate the system's weak 
points. The future work includes the performance verification of 
the proposed method using larger PEPSs. 
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