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A B S T R A C T   

Global power systems are transiting from conventional fossil fuel energy to renewable energies due to their 
environmental benefits. The increasing penetration of renewable energies presents challenges for power system 
operation. The efficiency and sufficiency of responsive reserves have become increasingly important for power 
systems with a high proportion of renewable energies. The Fast Frequency Reserve (FFR), especially the Wide- 
area Monitoring System (WAMS)-based FFR, is a promising and effective solution to secure and enhance the 
stability of power systems. However, cyber security has become a new challenge for the WAMS-based FFR 
system. Cyber attacks on the FFR control system may threaten the safety of power system operation due to the 
rapid power controllability requirement of FFR. To address this problem, a time-frequency based cyber security 
defense framework is proposed to detect the cyber spoofing of synchrophasor data in WAMS-based FFR control 
systems. This paper first introduces the Continuous Wavelet Transforms (CWTs) to decompose spoofing signals. 
Then, the Dual-frequency Scale Convolutional Neural Networks (DSCNN) is proposed to identify the time- 
frequency domains matrix from two frequency scales. Integrating CWTs and DSCNN, an identification frame-
work called CWTs-DSCNN is further proposed to detect the spoofing attacks in the WAMS-based FFR system. 
Multiple experiments using the actual data from FNET/GridEye are performed to verify the effectiveness of the 
framework in securing WAMS-based FFR systems.   

1. Introduction 

The transition of global energy from fossil fuel energy to renewable 
energy has significantly accelerated in the past decade [1,2]. According 
to 2020 Renewable Global Status Report, the newly installed capacity of 
renewable energies is record-breaking in 2019, growing by more than 
200 gigawatts (GW), which is the largest installation capacity increase in 
history [3]. Additionally, as research and development efforts and en-
ergy policies in almost all countries are increasingly focusing on 
renewable energy development, it is clear that the renewable penetra-
tion in power systems will continually increase in the foreseeable future 
[4]. 

Due to the physical characteristics of renewable energies, renewable 
generation is usually integrated into power systems through Grid- 
connected Converters (GCCs) [5]. As is well known, system inertia is 

provided by generators and motors rotating at the same frequency, 
which forms the power grid frequency [6,7]. However, the GCC 
connection decouples generator rotors to power grids, and some even do 
not have mechanical rotors. Therefore, most renewable energies can not 
provide the necessary grid services [8]. With the increasing penetration 
of renewable energies, the system inertia decreases inevitably. When an 
event occurs (e.g., generator trip or load loss), the stability of the power 
system with a high proportion of renewable energies will be more 
vulnerable. For example, the Rate of Change of Frequency (RoCoF) and 
the frequency deviation would be larger for the same amount of power 
imbalance, and finally leads to the tripping of protection relays [9]. As 
the generation mix changes, maintaining the system frequency at 
acceptable levels becomes a thorny issue [10]. 

To handle the emergency operating situations of low inertia systems, 
Fast Frequency Reserve (FFR) has received much attention in recent 
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years [11,12]. According to the definition by the North American 
Electric Reliability Corporation (NERC), FFR is designed to provide a 
fast power response to changes in the measured or observed frequency 
during a frequency excursion event [13]. In the past, the inertial 
response from synchronous generators is the dominant FFR in the sys-
tem. With the conventional generator retired and replaced by renewable 
energies, system operators proposed higher response requirements [14]. 
In the frequency response requirement of the California Independent 
System Operator (CAISO), FFRs need to act within the first few seconds. 
The frequency response of synchronous generators cannot meet the 
operating requirement [15,16]. The FFR provided by energy storage 
devices and fast-responding controls from renewable energies, such as 
batteries, flywheels, and kinetic energy extraction from Wind Genera-
tors (WGs), has become the mainstream in recent years [17,18]. 

Due to its fast response capability to the frequency deviation, the FFR 
has been widely recognized as the primary response to the frequency 
excursion of low-inertia systems. Some frequency regulation methods 
based on the FFR response have been studied, including using the 
rotating kinetic energy from WG [19,20], and extracting energy stored 
in DC links [21]. The demand-side response has also been studied, such 
as the aggregation of refrigerators [22], smart loads [23], and PV panel 
control [24]. 

So far, most control methods for FFRs are based on local frequency 
measurement. Due to its dependence on the geographical distribution of 
renewable resources and grid infrastructure, the location of renewable 
generation is typically distributed non-uniformly [25]. The local 
measurement-based FFRs cannot exactly match the power requirement 
and FFRs response. As a result, the output from the FFRs may not 
improve frequency performance and even cause inter-regional power 
oscillations [26]. With the advancement of the phasor measurement unit 
(PMU) in accuracy and the reporting rate, wide-area monitoring system 
(WAMS) provides system operators with an unprecedented way to 
monitor and control power systems. In [27], a WAMS-based FFR control 
system is presented, which uses real-time data from PMUs to determine 
the required responses and allocate them to FFRs. Compared to the 
conventional FFR control, this WAMS-based control could realize the 
coordination and optimization of FFR in the system, improving the 
system stability. With the increasing need of FFRs, the WAMS-based FFR 
is a promising solution for system stability enhancement. 

However, the data security of PMUs has always been vulnerable as 
evidenced by the increasing reported cases of cyber attacks. Owing to 
their operating principle and communication methods, PMUs are easy to 
be penetrated [28]. In various attack methods, the network-based false 
data injection (NFDI) attack may seriously influence the authenticity of 
data, causing malfunction of FFRs, which is even worse than the case 
without FFRs. Considering the fast response capability of FFRs, the risk 
of the reverse direction regulation of FFRs could be a potential disaster 
to the system stability. Therefore, cyber-attack detection becomes 
essential for the FFR response. 

Due to its importance, there has been some research on the defense 
against power grid attacks. In [29], the hijacking attacks are detected in 
DC microgrids using the distributed screening method. The attack on the 
AC/HVDC interconnected system has also been studied in [30] through 
manipulating the system measurements of frequencies. However, these 
methods require the values of other parameters of the circuit, such as the 
current, to achieve accurate detection. This limits its application to the 
FFR control circuits. Meanwhile, from the energy perspective, the attack 
will deplete the available energy, including the batteries and photo-
voltaic [31]. A two-stage robust optimization is proposed to mitigate the 
uncertainties and adverse impacts caused by NFDI attacks in [32]. 

For the attack detection in frequency control systems, some research 
has also investigated the defense strategies for the cyber attack. [33] 
develops an approach based on a novel stochastic unknown input esti-
mator to detect the attack in the AGC. The proposed method does not 
need information about real-time load changes, which significantly 
improve state estimation accuracy. Based on the state estimation 

accuracy, [34] analysis four different attack strategies and their impact 
on load frequency control. Based on the analysis results, a detection 
method based on a Multilayer perception classifier-based approach is 
proposed to extract the differences between the normal signal and 
compromised signals. Based on the passive fault attenuation principle, 
[35] design a new distributed cyber-attack-tolerant frequency control to 
improve the frequency performance and the tolerance under cyber 
attack. [36] develops a new virtual inertia control strategy that adopting 
the virtual damper to enhance the conventional virtual inertia control so 
that improve the frequency response performance such as frequency 
nadir and oscillation under the time delay attacks. One common feature 
of these attacks is the modification of the measurement data. In the NFDI 
attack, such measurements are tampered behaviors that can be consid-
ered as a replay attack. The replacement signal in these attacks can be 
very similar to the raw measurement, bringing challenges for accurate 
attack detection. 

Depending on the robustness of attack detection, cyber security de-
fense methods can be divided into model-based methods and model-free 
methods. Model-based methods usually establish state equations to 
detect the attack [37]. Changes in measured values will cause changes in 
state variables. Then, attacks can be detected based on the measurement 
residual vector or state variables [38]. These model-based methods 
build equations based on the system structure. Therefore, the configu-
ration information on the previous state is needed, which sacrifices its 
generality and adaptability. 

Model-free methods include traditional machine learning methods 
and deep learning methods [39]. They also belong to data-driven 
methods, which make full use of the PMU data in the FFR control sys-
tem. For example, the Random Forest Classification (RFC) and gcForest 
are used to detect the spoofing attack by extracting the spatio-temporal 
characteristics from the synchrophasor data [40,41]. Additionally, the 
data authentication method is proposed to detect the data spoofing 
based on ensemble empirical mode decomposition (EEMD) and back 
propagation (BP) neural network [42]. These methods are based on the 
frequency domain features of the signal, because the frequency domain 
information is considered to be consistent during a short time [43]. 
However, the period of this frequency information retention is not 
considered. In [44], the support vector machine is introduced for 
spoofing events recognition, and the handcrafted correlation vectors are 
designed for detecting spoofing attacks. However, the time domain- 
based recognition method is only applicable when the shape of the 
attack differs from the original measurement value. The above model- 
free methods either only contain frequency information or only 
contain time domain information, resulting in an insufficient response to 
complex attacks. Meanwhile, the simulated data is used in some 
research. For example, the intentional injections of false synchrophasor 
measurements detection method is verified based on the IEEE 39-Bus 
system [45]. Compared with the simulated data and the actual data, 
the components such as the noise level and frequency components are 
different. Massive measurement data increases the demand for deep 
learning methods, which have strong feature extraction capabilities. 

Considering the big data in WAMS and the fast response requirement 
of FFR application, deep learning methods have been introduced for 
attack detection. In [46], the deep autoencoder is deployed to detect the 
data manipulation attacks, assuming that the data packets of PMU data 
can be modified. Besides, a recurrent neural network is proposed to 
identify the replaced false data in DC microgrids [47]. Nevertheless, the 
recurrent network is only suitable for the data with a certain trend, while 
synchrophasor measurement data is often random, especially frequency 
measurement values. Therefore, the convolutional neural networks 
(CNN), longshort-term memory (LSTM), and SVM are combined to for 
detecting tampering attacks using the raw signals in [48], which also 
demonstrated the profound feature extraction capabilities of deep 
learning. However, this combination makes this method very compli-
cated and difficult to train. It can be seen from the results of the existing 
research that the optimized input space is worthy of further mining to 
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improve the attack detection performance in the FFR control system, so 
that the response speed can be guaranteed and the FFR control reliability 
can be improved. 

To increase the amount of input information and improve the per-
formance of cyber-attacks detection, a cyber-security defense method is 
proposed in the WAMS-based FFR control systems. The proposed 
method includes the following innovations.  

1. To extract the information of the attack signal from multiple scales in 
the WAMS-based FFR control system, the Continuous Wavelet 
Transforms (CWTs) is applied to transform the spoofing signal and 
obtain features from the time and frequency domains to enhance 
feature diversity.  

2. To enhance the attack detection ability in the WAMS-based FFR 
control system, the Dual-frequency Scale CNN (DSCNN) is proposed 
to process the input data from two frequency scales. This scaling 
feature improves the detection ability of the spoofing attack.  

3. A spoofing attack identification framework of synchrophasor data is 
developed based on the CWTs and DSCNN. Particularly, the hand-
crafted feature design steps can be avoided.  

4. Importantly, the time-sensitivity experiment of the spoofing attack 
detection is first performed in this paper. Compared with some deep 
learning and advanced attack detection methods, the experimental 
results verify that the proposed CWTs-DSCNN framework has higher 
accuracy and better robustness. 

The main contribution of this paper is the proposed CWTs-DSCNN, 
which provides a rapid and reliably cyber security defense mechanism 
for the WAMS-based FFR control system. The proposed method breaks 
through the speed and accuracy limitations of the traditional detection 
methods, significantly improving the operating security of the WAMS- 
based FFR control system. Additionally, the proposed method has 

been evaluated with actual synchrophasor data from the Western 
Interconnection (WECC) system, which verified its practical value in the 
WAMS-based FFR control system. 

The rest of the paper is organized as follows. Section 2 describes the 
potential impact of the spoofing on the power system. Section 3 presents 
the time-frequency based signatures extraction using CWTs. And the 
proposed DSCNN is introduced in Section 4. Next, the proposed CWTs- 
DSCNN framework is listed in Section 5. Different experiments are 
conducted in Section 6. Finally, the results and conclusion are discussed 
in Section 7. 

2. The WAMS-based FFR control system under cyber attack 

To demonstrate the impact of the attack on FFR control, the control 
framework of the WAMS-based FFR control system is first introduced, as 
shown in Fig. 1, where fref is the nominal frequency, flocal− measurement is the 
measured frequency from Local PMU, f , θ, and V are measured fre-
quency, angle, and voltage, respectively. Δθ is the phase angle difference 
during pre-disturbance and post-disturbance steady states, ΔPorder− θ is 
the power order calculated from the transient stability control in remote 
fast response controller, ΔPorder− f is the power order calculated from the 
frequency response control in remote fast response controller, 
ΔPorder− FFRi is the power order for controlling ith FFR output, ΔPorder− flocal 

is calculated from the frequency response control in local fast response 
controller, the ΔPFFR− op is operating output of FFR, ΔPFFR is the power 
output of FFR after control, ΔPFFR− max is the power output max of the 
FFR and kFFR is the response droop coefficient of FFR. The corresponding 
working process can be described as:  

1. Step1: The frequencies, phase angles and voltages in different buses 
are measured by PMUs. Then, the PMUs will send the data to the 

Fig. 1. The control framework of the WAMS-based FFR control system.  
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Phase Data Concentrators server (PDC-server) via communication 
protocol IEEE C37.118 [49].  

2. Step2: After receiving the data packet, the PDC-server will send the 
consolidate PMU data to remote fast response controller (RFRC) for 
FFR control. In the RFRC, two control strategies are typically adop-
ted: frequency response control and transient stability control. The 
frequency response control will aggregate all measured frequencies 
from PMUs and calculate the power demand of the system by the 
proposed control strategy (in Fig. 1, the basic frequency droop con-
trol strategy is adopted, and other advanced control strategies are 
also compatible). The transient stability control aims at mitigating 
the power oscillation on the AC intertie between two areas. The 
transient stability control is based on the phase angle measured from 
PMUs. According to the Δθ values on both ends of the AC intertie, the 
transient stability control will calculate the power requirement of the 
system.  

3. Step3: The calculated power demand ΔPorder− f and Porder− θ will be 
sent into FFR response allocation. The FFR response allocation will 
allocate the power demand to every FFR according to the proposed 
advanced allocation strategy.  

4. Step4: The allocated power order to the FFR will be sent to the control 
interface of FRR. Meantime, the remote control signal Swill also be 
sent to the control interface. If the control interface received the 
remote control signal, the FFR will adopt the allocated power order 
from remote fast response controller. Otherwise, the local power 
order that generated from local fast response controller will be 
adopted as the control order. In the WAMS-based FFR control system, 
the priority of the remote fast response controller is higher than the 
local fast response controller. The local fast response controller will 
be a backup in case of communication lost. 

As shown in Fig. 1, the response of the WAMS-based FFR control 
system is mainly based on the frequency difference between PMU 
measurement points. Therefore, frequency data measured from PMUs 
play a decisive role in the WAMS-based FFR control. However, owing to 
the vulnerability of the communication protocol, PMUs are easily 
attacked by cyber attackers. This has been verified by some cyber-attack 
events reported in recent years [50,51]. Owing to the serious conse-
quences that could be caused by the impaired FFR response, the WAMS- 
based FFR control system is becoming increasingly attractive to cyber 
attackers. In Fig. 1, the attack can be targeted at the data transmission 
between PMUs to the PDC server or between the PDC server to RFRC. 
Once PMUs are maliciously penetrated by cyber attackers, the fake 
frequency data will lead to the incorrect calculation of power demand 
and the wrong response of FFRs. 

To illustrate the impact of a cyber attack on the WAMS-based FFR 
control system, a comparison study is performed on a simplified system. 
Fig. 2 shows a configuration of the simplified WAMS-based FFR control 

system. Here, the PMU measures the frequency and send data to PDC, 
Then, PDC sends the data to the frequency response controller of FFR. 
The FFR power output will follow the power order calculated from 
frequency response controller. Before t = 3 s, the power output of the 
FFR is 0 MW. At t = 3 s, the frequency data measured from PMU is 
spoofed in a cyber attack. The frequency response of FFR after this cyber 
attack event is shown in Fig. 3. 

Fig. 3 shows the frequency comparison and FFR power output 
comparison with and without the cyber attack. As can be seen from 
Fig. 3, when the spoofing attack data is injected into the PMU, the FFR is 
activated due to the frequency deviation brought by spoofing attack 
data. The FFR starts to extract power from the system to its ES unit, 
trying to reduce to the system frequency deviation. However, since the 
frequency data that FFR followed has been spoofed, the system fre-
quency is decreased to below 60 Hz. At t = 7s, the cyber attack ends, the 
frequency value sends to FFR is changed from spoofing attack data to the 
actual system frequency measured by PMUs. Due to the large frequency 
deviation between the expected and actual values at t = 7s, the power 
direction of FFR changes rapidly to provide power support. It also can be 
seen from Fig. 3(a) that the system frequency has also dropped more 
than 0.5 Hz due to the long duration of the spoofing attack. Some electric 

Fig. 2. The architecture diagram of a simplify WAMS-based FFR control system embedding in a test system.  

Fig. 3. The frequency response of the simplify WAMS-based FFR control system 
under cyber attack. (a) Frequency comparison in system. (b) Power output 
comparison of FFR. 
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equipment and loads may trip under this frequency. Thus, attack 
detection is important to mitigate the effect of cyber attacks in WAMS- 
based FFR control systems. 

As shown in Fig. 1, with the proposed attack identification method, 
the spoofing attack data could be detected rapidly. Then a signal can be 
sent to the remote fast response controller for stopping the FFR response 
or activating other recovery strategies to eliminate the frequency devi-
ation. Next, the proposed cyber security defense method will be intro-
duced in detail below. 

3. Time-frequency based signatures extraction for spoofing data 

3.1. Data detrending 

The objective of this section is to detect the source ID cyber spoofing 
from multiple PMU units. The definition of the source ID cyber spoofing 
is as follows. Denoted the vector Si = {si,1, si,2,…, sj,n} as the measure-
ment data in the i-th PMU in the time 1ton. For any unknow synchro-
phasor data segment Ss = {s1,s2,…,ss}where 1⩽s⩽n, the source ID cyber 
spoofing will happen when the data in Siis replaced by Sswith a certain 
time window of the same length [52]. It also should be notable that the 
playing back and scale attacks can be seen as special cases of source ID 
spoofing attacks. 

The synchrophasor data from WAMS-based FFR control system has a 
common data trend, which does not contain useful information for 
attack detection. Before the signatures are extracted, the data pre-
processing is necessary to remove this redundant information. 

In this paper, the frequency data is selected as verification data for 
method validity. As shown in Fig. 4, the frequency data from three lo-
cations have the same main trend. The difference is the deviation of the 
frequency change. Actually, the main trend can be regarded as the DC 
component due to the very small change rate. To remove the main trend, 
a high pass filter is used in the data preprocessing process. 

After that, the synchrophasor data stream is divided into time win-
dows of a 320-point length to facilitate signature extraction, where the 
sampling rate is 10 Hz. 

3.2. Time-frequency signature extraction using CWT 

Since the cyber spoofing of WAMS-based FFR control system is 
secretive, efficient identification methods are required to allow contin-
uous detection. Here, the Continuous Wavelet Transforms (CWTs) is 
applied to the detrended synchrophasor data. Compared with some 
advanced data spoofing detection methods, such as the FFT-ANN [43] 
and the support vector machine [44], only the frequency or the hand-
crafted statistical features are used, which is usually insufficient to fully 
describe the characteristics of the input signal because the single sta-
tistical feature often only contain information of a specific aspect. The 
motivation of using the continuous wavelet transforms (CWTs) is to 
extract features from both the time and frequency domains and improve 

the performance of the data spoofing detection [53]. Compared with the 
FFT method, which only gets the frequency domain information of 
spoofing data, the advantage of CWTs is that it can obtain richer infor-
mation in the spatio-temporal dimension. 

Given the detrended data as s(t), the CWT of s(t) is defined as the 
convolution calculation method, which can be expressed as 

S(a, τ) =
∫ +∞

− ∞
s(t)

1̅
̅̅̅̅̅
|a|

√ ψ*
(τ − t

a

)
dt (1)  

where ais the scale factor, which is used to control the signal to be 
zoomed in or out by changing the value. τis the time shifting factor. 
ψ(t)and ψ*(t)are the mother wavelet and its complex conjugation, 
respectively. The time and frequency resolution of CWTs is determined 
by the wavelet ψ(t). 

The output of CWTs is the complex valued matrix. To facilitate the 
identification of the cyber spoofing signal, the complex valued matrix is 
further transformed into a power spectrum, which is calculated as 

Ecwt(p, q) = |S(a, τ)| (2)  

where the pand q are the dimension of the Ecwt. 
According to the uncertainty principle of signal processing, the time 

and frequency resolution always contradict each other. In practice, it is 
hoped that the time resolution is better at high frequencies, and the 
frequency resolution is better at low frequencies. In CWTs, the mother 
wavelet ψ(t)and the scale factor determine the resolution in different 
frequency bands. To select the suitable parameters, three different 
mother wavelet functions, including the complex Gaussian wavelets 
(Cgau8), Morlet wavelet, and Mexican hat wavelet, are used to show the 
effect of signal analysis. It should be noted that these three types of 
mother wavelet functions are selected after the preliminary screening of 
seven types of mother wavelet functions, which the other four wavelet 
functions are complex morlet, shannon, frequency B-spline, and 
Gaussian derivative wavelets. The wavelet functions with relatively low 
decomposition results are eliminated. The results of CWTs under 
different wavelet functions are shown in Fig. 5. 

The scale factor is optimally selected from multiple candidate sets for 
a reasonable comparison. 

As shown in Fig. 5 (a), the spoofing area occurs between 1.5s to 12s. 
The results from Fig. 5 show that they contain higher frequency com-
ponents (higher than 3 Hz) when t⩽15s. However, the high frequency 
components disappear after 16s for the Mexican hat wavelet, which 
means it has lower time resolution in high frequency bands. In the low 
frequency bands between 0 to 2 Hz, the details of Cgau8 and Morlet are 
obvious. It means that they have higher frequency resolution in the low 
frequency bands. The above analysis shows that the Cgau8 and morlet 
wavelets performers better. When observing from the frequency axis in 
Fig. 5(b) and (c), more frequency points are located during 4 to 5 Hz. 
There are three frequency points during 4 to 5 Hz in Fig. 5(c), and only 
two frequency points for Fig. 5(b) during 4 to 5 Hz. This means that the 
Cgau8 has lower frequency resolution and better time resolution in high 
frequency compared with Morlet wavelet. Therefore, the Cgau8 is 
selected as the final mother wavelet in CWTs. At this time, the scale 
factor is selected empirically as 2fcL/L!, where fc = 0.7Hz is the center 
frequency of Cgau8, L = 320is the length of each sample. 

To show the effectiveness of CWTs for analysing the cyber spoofing 
data, the comparison between normal and spoofing data is presented in 
Fig. 6. In Fig. 6(c), the data of (a) is spoofing by the data from an un-
known source. As shown in Fig. 6 (b), it mainly contains some low fre-
quency components which are lower than 1 Hz. However, when the data 
is spoofed in Fig. 6 (c), some frequency components that are higher than 
1.5 Hz can be observed, as depicted in Fig. 6(d). Moreover, it can be seen 
from Fig. 6(c) and (d) that the duration is close to the actual spoofing 
time. It should be noted that the length of the spoofing area can be 
changed so the attack would be more invisible. Based on the CWTs, the 

Fig. 4. The measurement synchrophasor data in three locations.  
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Fig. 5. The CWTs of the spoofing data using three different mother wavelet functions. (a) the spoofing data, (b) the complex Gaussian wavelets with level 8, (c) the 
Morlet wavelet, (d) the Mexican hat wavelet. 

Fig. 6. The time-frequency signatures of the normal and spoofing data. (a) the normal data, (b) the CWT of normal data, (c) the spoofing data, (d) the CWT of 
spoofing data. 
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characteristics of cyber spoofing can be observed from the time and 
frequency domains. Using the differences between the data from the 
WAMS-based FFR control system, the accurate classifier can then be 
applied to identify spoofing attacks. 

4. Cyber spoofing detection using Dual-frequency Scale CNN 

WAMS systems usually have hundreds to thousands of synchropha-
sor measurement Units. Therefore, it is necessary to use the big data 
processing method to defend against cyber spoofing. CNN has been 
developed to learn useful information from massive input data. 
Compared with some classic machine learning methods, such as ANN, it 
has higher computing requirements but also higher efficiency [54]. 
However, its performance suffers from the single convolution method 
and redundancy. To overcome this problem, this paper proposed a novel 
Dual-frequency Scale CNN (DSCNN) to improve the calculation 
efficiency. 

4.1. Basic structure of CNN 

Generally, CNN structure consists of multiple components, including 
the convolutional, pooling, and classification layers. The convolutional 
and pooling layers can be alternated or stacked to form a multilayer 
network structure [55]. And the classification layer is always at the end 
of the CNN. 

As the name indicates, the signatures of the time-frequency matrix 
are transformed by the convolutional layer. This layer mainly includes 
convolution operations and parameter sharing. The diversity of signa-
tures depends on the kernel size kand the number of channels of the 
convolutional layer. However, only one kernel size can be set for each 
layer, which will lead to single characteristics and pass a single message 
to the next layer. For example, if the input data is calculated by a 
convolution kernel sized 3 times 3, the output of this layer would be 
some local features due to its small size. Therefore, this layer mainly 
determines the performance of CNN. 

The pooling layer is used to filter the extracted signature information 
while reducing the data dimension. If too many signatures are filtered in 
each pooling layer, it may cause under-fitting. In contrast, if only a small 
part of the information is filtered, it will cause overfitting. Normally, the 
parameters of each pooling layer are set uniformly to avoid information 
loss. Finally, the classification layer is connected to the extracted sig-
natures with the class of the target. The settings of the classification 
layer are relatively fixed and have little impact on the model. 

4.2. Proposed dual-frequency scale CNN 

As mentioned above, the detection effect of cyber spoofing mainly 
depends on the defects of the convolutional layer. To eliminate this 
defect, the dual-frequency scale CNN with the Octave Convolution (OC) 
is proposed. 

Actually, the power spectrum Ecwtis treated as the two-dimensional 
structure instead of obtaining information solely from the time or fre-

quency axis in CNN. As shown in Fig. 7, the Fig. 7(b) and (c) are the 
higher and lower frequencies of Fig. 7(a) calculated using the 2D-FFT, 
respectively. For the two-dimensional structure, it can be seen that the 
higher frequency of the power spectrum is usually encoded with details, 
such as the start time and the magnitude of the spoofing. The lower 
frequency is encoded with global features, such as the length of the 
spoofing. Therefore, the spatial resolution can be further improved from 
dual-frequency scales, where the scale refers to the dimensions and in-
formation contained in the signatures extracted in the convolutional 
layer [56]. 

Then octave convolution can be used here to reduce the redundancy 
by considering the high frequency and low frequency features in the 
convolutional layer, which is first introduced in [57]. Here, the input of 
the DSCNN is denoted as X = {Ecwt}m, where mis the number of training 
samples. The first step of OC is to process the X in two channels X =

{XH,XL}m, namely the high and low frequency signatures extraction 
channels. Meanwhile, these two channels are expected to communicate 
efficiently. Therefore, this interactive layer is represented as XH− Land 
XL− H. The output of each frequency channel can be given by 
YH = {YH− H +YL− H} and YL = {YL− L + YH− L}, where the H − Ldenotes 
the high-dimensional data is converted to low-dimensional data using an 
average pooling layer, the L − Hdenotes the low-dimensional data is 
converted to high-dimensional data using upsampling operation. 
Finally, the merge operation will be used to fuse all the YHand YL. 

Specifically, in the first layer of DSCNN, the X is spilt into XH and XL 
channels using the convolution. The output of the first layer can be 
obtained as 

Yl = f (Wl*X + bl)

= f (Wl
H*XH + bl

H) + f (Wl
L*Xl

L + bl
L)

= Yl
H + Yl

L

(3)  

where * denotes the convolution operation, f is the activate function, the 
Wl = {Wl

H,W
l
L} and bl = {bl

H, b
l
L} are the weight and bias in two fre-

quency channels at the lth layers, respectively. The dimension of the Yl
Lis 

only half of Yl
H, thus the low and high frequency signatures can be 

extracted. Based on the first layer, the output of the next OC layer can be 
expressed as 

Yl = {Yl
H− H +Yl

L− H}+{Yl
L− L + Yl

H− L} (4)  

where the Yl
H− Hand Yl

L− L are general convolutional layers and their 
output dimension will not change. Yl

L− H and Yl
H− L are the interactive 

signatures, which are used to enrich the feature space. Eventually, the 
output of each high and low frequency channel is 

Yl
H = {Yl

H− H + Yl
L− H}

= f (Wl
H− H*XH + bl

H− H) + f (Wl
L− H*Xl

L + bl
L− H)

(5)  

and 

Fig. 7. The gray data of the power spectrum Ecwtunder cyber spoofing based on 2DFFT. (a) the Ecwtof the spoofing data, (b) the higher frequency of Ecwt , (c) the lower 
frequency of Ecwt . 
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Yl
L = {Yl

L− L + Yl
H− L}

= f (Wl
L− L*XL + bl

L− L) + f (Wl
H− L*Xl

H + bl
H− L)

(6) 

Thereafter, the last step of OC in DSCNN is to add two channels 
together. The OC can be used to replace the regular convolution. In the 
low frequency channel, the data dimension is only a half of the high 
frequency, which not only reduces the amount of calculation, but also 
expands the frequency space of signatures. 

Before cyber spoofing classification, a depthwise convolution is 
connected to the output of OC since the number of output nodes can be 
easily adjusted. Different from the regular convolution, the depthwise 
convolution needs fewer parameters while ensuring accuracy [58]. The 
output of a depthwise convolution is denoted as Yd, which is flattened 
and then connected to the softmax function. Then, the cyber attack can 
be identified through the label of each input power spectrum Ecwt . This is 
a two-class classification, where the data is identified as attacked or 
normal. 

5. Cyber security defense and identification framework 

Using the proposed CWTs and DSCNN, this section further proposes a 
cyber spoofing defense framework CWTs-DSCNN for spoofing data 
detection in WAMS-based FFR control system. As shown in Fig. 8, this 
framework can be summarized as the following steps  

• Time-frequency based power spectrum calculation: Performing data 
detrending to the synchrophasor data of the WAMS-based FFR con-
trol system using the high pass filter. Then the CWTs is applied to the 
filtered data to obtain the time-frequency features of the spoofing 
data. The time-frequency based power spectrum data are calculated 
as Ecwtwith the shape (160, 320).  

• Cyber spoofing identification: Establish a DSCNN model based on the 
extracted time-frequency based data. A total of three Octave 
Convolution (OC) are stacked. Based on the probability output of the 
softmax function, then the cyber spoofing from multiple measure-
ment units can be identified utilizing its unique signatures. The input 
synchrophasor can be classified into two categories based on the 
output label, including the normal data and spoofing data. 

As depicted in Fig. 8, the dropout is used to reduce the over-fitting. 
The random drop rate is empirically set to 0.5, which means that 50% 
of nodes are dropped during the training process. Next, the validity of 
CWTs-DSCNN is verified by multiple experiments. 

6. Experiments 

In this section, several experiments are used to verify the accuracy of 
the proposed method in detecting cyber spoofing attacks in the WAMS- 
based FFR control system. To make the attack signal closer to the real 
scene, the synchrophasor data collected from ten PMU units in WECC are 
used to simulate the cyber attack. It is more secretive if the real-time 

measured data of the power system is used to attack the original mea-
surement data in the same WAMS. As shown in Fig. 9, the synchrophasor 
frequency data are synchronized sampling in multiple states with a 
10 Hz reporting rate. Then, the data can be obtained from the FNET/ 
GridEye sever. FNET/GridEye is a pilot wide-area phasor measurement 
system, which covers the national or continental level power grid [59]. 
The FNET/GridEye uses low-cost but high-accuracy PMU variants to 
achieve the power grid information collection then transmit to their data 
center to achieve collection and analysis [60]. Nine units are used for 
training and one unit is reserved for source ID tampering. The reserved 
unit will not participate in training and is used to simulate unknown 
spoofing data. The frequency data is selected to analyze the performance 
of CWTs-DSCNN. The collected time is in January 4-5th (training and 
testing), 11 − 12th (the first week), 25 − 26th (the third week), and April 
5th (three months) of 2019. 

In these experiments, both the window size and the step size are set 
to 320. This means that each sample contains 32s data. There are 16848 
samples generated for training, and 2790 samples for verification. For 
the validation set, we choose one day, one week, three weeks, and three 
months after the training data to test the robustness of the method. Each 
time node has 2790 samples. For the CWTs, the Python library named 
PyWavelets is used, which is an open source wavelet transform software 
[61]. For the DSCNN, the training platform is based on GPU with GTX 
1060. During the training process, an attenuated learning rate training 
method is used, and 30 epochs are executed in total. The Keras deep 
learning library is used to establish the DSCNN model. 

6.1. Parameter sensitivity analysis 

The parameters of DSCNN directly affect the cyber spoofing detec-
tion in WAMS-based FFR control system. To select the suitable param-
eters, the grid search is used to determine some main parameters, 
including the number of convolutional layers, kernel size, the number of 
nodes in the fully connected layer, and the dropout rate in the dropout 
layer. Both the debugging and grid search methods are used. The value 
range of the hyperparameters is determined through preliminary 
debugging. Then, the grid search is applied to select the hyper-
parameters. In this section, the kernel size and the number of convolu-
tional layers are used as an example to show how to select the suitable 
parameters. 

In this experiment, the relationship between the kernel size and the 
number of convolutional layers are conducted, as shown in Fig. 10. The 
kernel size kranges from 3× 3to 15× 15with step size 2. The 3-layer, 4- 
layer, and 5-layer DSCNN denote that the number of OC layers are two, 
three, and four, respectively. As can be seen from Fig. 10, a larger kernel 
size usually has higher accuracy. Meanwhile, there is a slight drop when 
the k is equal to 15× 15for the five-layer DSCNN. For all numbers of 
layers, the lowest accuracy 95.90% is obtained when the k = 13× 13. 
The 5-layer DSCNN reaches the highest accuracy when kis between 9×

9and 13× 13. And the 3-layer DSCNN performs better than the 4-layer 

Fig. 8. The cyber spoofing defense framework based on CWTs-DSCNN. The conv. denotes the regular convolutional layer.  
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for most kernel sizes. This is because that the 4-layer has fewer model 
parameters and therefore causes a slight decrease in accuracy. Finally, 
the 3-layer DSCNN is selected as a trade-off between performance and 
the number of model parameters. 

Next, the accuracy between the kernel size and three time nodes are 
tested for 3-layer DSCNN, of which the result is shown in Fig. 11. The 
one-week time node denotes the test samples were collected one week 
later after collecting the training samples. It shows that the highest ac-
curacy is located at k = 13× 13in all three time nodes. Therefore, the 
k = 13× 13is selected. Additionally, the test accuracy decreases with 
the time increase. This is reasonable because the state of the power grid 
is changing, including load, generation, and transmission networks. It 
can also be seen that the accuracy difference between one week and 
three weeks is about 4%, while the difference between three weeks and 
three months is about 13%. 

6.2. Sensitivity analysis of different test time nodes 

Generally speaking, the grid status is different between weekends 
and weekdays. For example, less energy demand is required on week-
ends [62], which leads to different time-frequency characteristics of the 
synchrophasor data. Based on this consideration, this paper further 
studies the impact of training data which collected at different time on 

the accuracy. Here, the ’sensitivity analysis’ means the performance of 
the proposed method under different test time nodes. And its motivation 
is to explore the performance difference in different time periods. For 
instance, the data collected on weekdays is used for training and the data 
on weekends for testing. The test results are shown in Fig. 12. 

From Fig. 12(a), it can be seen that the test accuracy of the weekend 
is higher when weekday data is used for training. The weekend data test 
accuracy is still very high even after three months. Similarly, when the 
data from the weekend is used for training, the accuracy of the weekend 
data test is higher, as shown in Fig. 12(b). One reason for this phe-
nomenon is that the power grid status changes more drastically on 
workdays in different seasons, which leads to changes in signatures of 
time-frequency data. Then, when both the data of the weekends and 
weekdays are used for training, this difference still exists. However, the 
accuracy of attack detection on weekdays (78.73%) is slightly higher 
compared with Fig. 12(a)(76.15%) and (b)(78.09%). This implies that 
different time periods of synchrophasor data should be combined in 
training. To prevent the accuracy decrease at different times, two 
measures can be taken, including 1) update model parameters at regular 
intervals. By continuously retraining the model, the high accuracy can 
be maintained using the new measurement data, 2) use faster hardware 
and larger networks. If hardware conditions can be increased, a larger 
network can then be used to improve the detection effect. 

Fig. 9. The locations of ten collected frequency data in WECC system.  

Fig. 10. The performance of DSCNN under different kernel sizes and number of convoutional layers.  
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6.3. Identification accuracy comparison of the proposed method 

Different CNN structures are designed in this section to verify the 
effectiveness of cyber spoofing identification. Both weekend data and 
weekday data are used in this section. Six methods are designed, 
including CWTs-Extreme Learning Machine (ELM), LSTM, FFT-One- 
dimensional CNN (1DCNN), CWTs-1DCNN, regular 2DCNN, and 
DSCNN-no depthwise convolution (De.) methods. The LSTM is a method 
suitable for time series processing. The two-dimensional result of CWTs 
is flattened and fed into a two-layer structure of ELM. The number of 
nodes of ELM is optimized set to 500–400. Two LSTM layers are selected 
and the number of nodes before the classification layer is also 700 

points. The input of LSTM is the normal raw cyber spoofing frequency 
data. To compare the amount of information in frequency signatures, the 
FFT of detrended data is fed to 1DCNN. The structure of 1DCNN is 
referred to [63]. The motivation of CWTs-1DCNN is to verify the 
effectiveness of CWTs. Thus the structure of 1DCNN in CWTs-1DCNN is 
the same as FFT-1DCNN. For the 2DCNN, only the regular convolution is 
used. Meanwhile, the DSCNN without the depthwise convolution is also 
listed to verify its capabilities. It is worth mentioning that the number of 
convolutional layers is the same for 2DCNN, DSCNN-no De, and DSCNN 
to make a fair comparison. The identification results are listed in 
Table 1. 

It illustrates that the result of 2DCNN is 4% higher than LSTM and 

Fig. 11. Relationship between the kernel and three time nodes including one week, three weeks, and three months.  

Fig. 12. The time sensitivity analysis experiment. (a) Performance when the training data is collected at weekdays, (b) performance when the training data is 
collected at weekdays, (c) performance when the training data is collected from both weekends and weekdays. 
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6% higher than FFT-1DCNN, indicating that the time-frequency based 
signatures contain more information compared with the single time or 
frequency domain information. The result of CWTs-ANN and CWTs- 
2DCNN shows that CNN has stronger feature extraction and cyber 
attack detection ability. Although FFT-1DCNN has fewer parameters, 
the uncertainty reached 0.256%, which means that the model is unsta-
ble. FFT-1DCNN can also be used for the big data analysis scenario 
considering its fast calculation performance. The performance of FFT- 
1DCNN and CWTs-1DCNN shows that the CWTs contribute to accu-
racy improvement. The DSCNN-no De. obtains 1.2% and 0.65% higher 
accuracy in one-day and three-month testing, respectively. And the 
DSCNN outperforms the 2DCNN and DSCNN-no De. in the one-day and 
three-month testing, indicating that the proposed method has profound 
reliability. Meanwhile, the number of parameters is smaller and the 
running time of DSCNN is also less. This means that both the octave and 
depthwise convolution are beneficial to the efficiency of cyber spoofing 
identification. 

6.4. Performance comparison with advanced methods 

The last experiment is to compare the performance of CWTs-DSCNN 
with some advanced cyber spoofing detection methods, including FFT- 
ANN [43], MM-RFC [41], MM-gcForest [40], and EEMD-FFT-BP [42]. 
For FFT-ANN and EEMD-FFT-BP, only the frequency domain informa-
tion (amplitude spectrum) is used for cyber spoofing detection. In MM- 
RFC and MM-gcForest, more than 60 statistical features are extracted. 
The CWTs-ANN is used to verify the effectiveness of CWTs, where the 
ANN is the same structure as FFT-ANN. The F1 score is used and can be 
interpreted as a weighted average of the precision and recall, where a 
value closer to 1 indicates a better model [64]. The performance under 
different time nodes are tested, as listed in Table 2. The test time consists 
of signature extraction and spoofing identification for 2790 samples. 

As can be seen from Table 2, FFT-ANN has better accuracy and sta-
bility compared with EEMD-FFT-BP because an accuracy higher than 
83% is obtained for both one week and three weeks time nodes. It also 
has minimal time consumption, because multiple decompositions need 
to be calculated in EEMD. As for the FFT-ANN, MM-RFC, and MM- 
gcForest, the MM-gcForest obtains better accuracy even after three 
months. In terms of time consumption, the MM-gcForest is suitable for 
occasions with fast calculation and long-term operational requirements. 
The FFT-ANN has better performance in one week and it is suitable for 
short-term operation and small sample learning scenarios. The MM-RFC 
obtains the lowest accuracy since it has the lower F1 score and accuracy 
than the rest of the models. Thus it is recommended to use MM-gcForest 
when facing the same fast demand. And the CWTs-DSCNN has profound 
performance in all three time nodes. This means that the CWTs con-
tributes to spoofing data recognition. Compared with the FFT-ANN and 
CWTs-ANN, it shows that the CWTs-ANN obtains higher accuracy after 
three months because more information is extracted in CWTs. 

Moreover, it can be seen that 85.44% accuracy is reached even after 
three months for CWTs-DSCNN. The test time is about 268s due to the 

calculation of CWTs. Real-time performance can also be satisfied 
because each sample (320 points means 32s) only consumes 96 ms. 
Based on the above analysis, the proposed CWTs-DSCNN has a superior 
performance because it has high-quality input information and a high- 
precision classifier. 

7. Conclusion 

To enhance the stable operation of the WAMS-based FFR control 
system under various cyber attacks, in this paper, a time-frequency 
based cyber security defense framework called CWTs-DSCNN is pro-
posed to detect the cyber spoofing of synchrophasor data in the WAMS- 
based FFR control system. In the defense framework, the time-frequency 
matrix is first transformed using CWTs. The normal and spoofing time- 
frequency information of CWTs shows that unique signatures can be 
extracted efficiently. Then, DSCNN is proposed to identify the time- 
frequency based power spectrum based on the dual-frequency scale. 
Utilizing the data from FNET/GridEye, appropriate parameters of 
DSCNN are selected through parameter analysis experiments. The 
comparison with some advanced and commonly used methods reveals 
that the proposed method has a stronger detection capability for cyber 
spoofing attacks. In addition, the detection time and the amount of pa-
rameters are also reduced by using DSCNN, which makes it appropriate 
to be applied in the WAMS-based FFR control system. Time sensitivity 
analysis experiments evidence that the data of different time nodes need 
to be combined to fully describe the signature of synchrophasor data. 

There are several promising directions for future research. One topic 
could focus on the real-time calculation, which could be achieved by 
reducing the amount of calculation of CWTs. Another interesting topic is 
the complete detecting and response framework, which could realize the 
fast attack detection and provide effective response strategy to mitigate 
the cyber attack influence as soon as possible. 
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Table 1 
Comparison of different detection methods.  

Models Accuracy(%) Number of Test time 

Oneday  Threemonths  parameter  (ms)

CWTs-ELM 82.07 ± 0.008  70.25 – 13.462 
LSTM 92.11 ± 0.539  82.33 732 k 18.579 

FFT-1DCNN 89.64 ± 0.256  78.09 72 k 0.181 
CWTs-1DCNN 96.00 ± 0.490  85.16 3863 k 2.921 

2DCNN 96.18 ± 0.054  84.04 596 k 3.171 
DSCNN-no De. 97.35 ± 0.038  84.69 586 k 3.072 

DSCNN 97.78 ± 0.012  85.44 569 k 2.480 

Ave. Acc.: Average accuracy, k: thousand. 

Table 2 
Performance comparison with advanced methods  

Models Accuracy (%) Test time/s F1 score 

1week  3weeks  3months  (one day) 

FFT-ANN [43] 85.32 83.45 72.60 0.297 0.887 
CWTs-ANN 86.31 82.25 79.56 261.708 0.890 

MM-RFC [41] 74.40 70.15 68.08 5.047 0.737 
MM-gcForest [40] 82.15 78.85 75.95 5.488 0.823 
EEMD-FFT-BP [42] 73.51 71.58 60.10 2301.526 0.846 

CWTs-DSCNN 95.57 93.45 85.44 268.369 0.979  
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