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Abstract—The accuracy of oscillation mode information
become an essential reference to large-scale dynamics power
system with a high proportion integration of converters.
However, the difference in the data trend of the measurement
unit will affect the recognition accuracy of the oscillation. To
address this problem, this paper first proposes a Dynamic
Ensemble Intrinsic Time-Scale Decomposition (DEITD) to
remove the data trend. It improves the fitting effect of
trends by optimizing the modal aliasing and number of
decomposition. Next, the Yule-Walker based Auto Regressive
Moving Average (ARMA) technique is utilized to estimate
the low frequency oscillation modes. Multiple experiments
on simulation and actual signals manifest that the proposed
framework has better performance and is more real-time
than some conventional methods, which can be used as the
control signal of the converter-based fast frequency reserve
to enhance the system stability.

Index Terms—Auto Regressive Moving Average, Dynamic
Ensemble ITD, Oscillation modes, Ambient data

I. INTRODUCTION

With the increasing number of the converter integrating

into the power system, the system inertia witnessness

continuous decreasing recently [1]. Conventional response

reserve may be insufficient for following detailed dynamic

manifestations of power systems. Meanwhile, the low

frequency oscillation with a frequency range of 0.1 to

2.5 Hz, is the active power oscillation on the power

transmission line [2], [3]. It can damage the stability of

power system when the oscillation occurs because the

transmission capacity will be limited [4], [5]. Thereby,

the oscillation estimation is of paramount important for

the power system control [6], [7], and the estimated

results of ambient data can potentially be used for the

converter-based fast frequency response application. Once

started, it may continue for a while and cause power

system collapse. Importantly, the effect of Power System

Stabilizer (PSS) will be reduced if the oscillation modes

are not accurately measured, as the parameter of PSS is

primarily based on the modal analysis [8]. Therefore, it

is essential to develop methods to accurately estimate the

parameters of low frequency oscillation.

Generally, the modal estimation methods can be

performed based on two types of approaches, including

the system based and data driven based methods [9].

The system based approach linearizes the system function

through theoretical derivation. For example, the linear

This work is supported by the Engineering Research Center Program
of the National Science Foundation and DOE under NSF Award Number
EEC-1041877, the CURENT Industry Partnership Program, and the
Postgraduate Scientific Research Innovation Project of Hunan Province.

rotor motion equation is used to analyze the features

of generator kinetic [10]. However, this method cannot

be applied to modal analysis once the system structure

changes and the system model is no longer valid.

To solve the above issue, different data-driven based

methods are proposed. The Prony is one of the most

commonly used methods to calculate the oscillation

parameters [10]. However, it suffers from the measurement

and ambient noise when the Signal-to-Noise Ratio (SNR)

is lower than 30dB due to the lower noise immunity. Some

other methods, including the matrix pencil [11], Empirical

Mode Decomposition (EMD) and Hilbert transform [12],

also have been successfully applied to modal estimation.

Nevertheless, the estimation accuracy can decrease if the

parameters of EMD has not been properly tuned. The

Auto Regressive Moving Average (ARMA) model has

been proved effective for detecting oscillations even using

the ambient data [9]. Since the event signal of the system is

difficult to obtain, the oscillation parameters of the ambient

data become one of the basis of the power system control.

However, the slow trend (DC trend) in the ambient data

is difficult to be eliminated and the leaked energy affects

the estimated result.
To reduce the impact of the DC trend, the Intrinsic

Time-Scale Decomposition (ITD) method can be used

to decompose a non-stationary signal into multiple

sub-signals and residual trend signal [13]. Therefore,

useful effective information is expected to be extracted

by removing the DC component. However, it has

two practical limitations that reduce its application in

processing the oscillation mode analysis. The first is that

the trend component is difficult to be accurately identified,

resulting in the leakage of oscillation energy. The second

is that difference in the number of decomposition in ITD

will cause errors.

Therefore, this paper proposes a Dynamic Ensemble

Intrinsic Time-Scale Decomposition (DEITD) to

accurately eliminate the slow trend items. Combined

with the advantages of ARMA’s high accuracy, a novel

oscillation estimation method is proposed based on

DEITD and ARMA.

II. DETRENDING USING DEITD

Due to the dynamic changes of the power system,

including load and power output adjustment, the

measurement data of the power system is changeable

and non-linear. The non-linear trend of the measurement

data will reduce the effect of oscillation recognition

if it is not accurately removed. To eliminate this, an
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adaptive decomposition method DEITD is proposed to

remove the non-linear trend. Compared with the traditional

detrending methods, including the EMD and polynomial

fitting methods [14], the advantages of DEITD are that it

is more real-time and has more precise detrending results.

A. Procedure of ITD

Given the measurement data as xt, where the xt can be

frequency, angle, and power data. In the ITD, the xt can

be expressed as the sum of baseline and proper rotation

signal.
xt = Υxt + (1− Υ )xt = Rt +Ht (1)

where Υ is the baseline-extracting operation to extract the

oscillation modes, the Rt = Υxt denotes the baseline

signal, namely the object trend component which needs

to be removed. Ht denotes the proper rotation.

To obtain the Rt, the local extrema of xt is denoted as

τk, where k = 1, 2, .... The first point τk is set to τ0 = 0
for convenience. When t ∈ [0, τk+2], the operation Υ on

the interval (τk, τk + 1] can then be defined as

Υxt = Rk +

(
Rk+1 −Rk

xk+1 − xk

)
(xt − xk), t ∈ (τk, τk + 1]

(2)

where R0 = (xτ0 + xτ1)/2. The Rk+1 is the function

related to τk, where the definition can be derived from

[13]. The baseline signal Υxt is a linearly transformed

contraction to make the proper rotations monotonic

between extrema.

For the complex oscillation signal, the process can be

re-applied for p times using the generated Rt to complete

ITD decomposition, which can be calculated as

xt = Hxt + Υxt = Hxt + (H + Υ )Υxt

=
(
H(1 + Υ ) + Υ 2

)
xt =

(
H

p−1∑
k=0

Υ k + Υ p
)
xt

(3)

where H is the proper-rotation-extracting operator, H +
Υ = 1, the HΥ kxt is the (k + 1)st level proper rotation,

the second item Υ pxt is the extracted trend of oscillation

signal.

B. Detrending analysis using DEITD

The motivation of DEITD is to obtain an accurate trend

component. In the proposed DEITD, the ensemble ITD

is utilized to reduce the modal aliasing. It means that

N numbers of ITDs are calculated and the results are

averaged. Meanwhile, the number of decomposition is

automatically determined using the proposed error criteria.

The primary steps of DEITD for processing the oscillation

signals are as below.

1) Dynamic selection the number of decomposi−
tions p using error criteria. In DEITD, the

p is optimized selected using the Mean Absolute

Percentage Error (MAPE) and Root Mean Squared

Error (RMSE). The sum of RMSE and MAPE for

the detrending signal are calculated using different p
in single ITD. The p value with the lowest RMSE

and MAPE is selected.

2) Add white noise. Different from the ITD, the white

noise with standard deviation ns is first added to

oscillation signal xt to construct a noisy signal. The

input of DEITD becomes xt + nw. The purpose of

adding white noise is to smooth pulse interference

and reduce modal aliasing through the integration of

multiple ITDs [15]. Then, perform the ITD for the

noise signal xt + nw.

Fig. 1. The decomposition results using DEITD and the corresponding
FFT results. (a) The results of DEITD, (b) The FFT of the (a).

3) Integrate N ITDs and remove the trend. At this

stage, the output of DEITD is obtained by averaging

each output of ITD. Denoting the trend output

of DEITD as Υ p
e (xt + nw). The trend component

can then be removed. The target signal x̄t can be

expressed as x̄t = xt − Υ p
e (xt + nw).

In the first step of DEITD, the RMSE and MAPE are

used to measure the error of the trend term. Usually, a

trend with a better fitting effect should have a smaller

error. Therefore, the p can be dynamically selected as

p = Index{Min(eRMSE + eMAPE)} (4)

where the defination of eRMSE and eMAPE are

eRMSE =

√√√√ n∑
i=1

(
xt − Υ p

e (xt + nw)
)2

eMAPE =
1

n

n∑
i=1

∣∣∣∣xt − Υ p
e (xt + nw)

xt

∣∣∣∣
(5)

where n is the length of xt. In this paper, the p is selected

from the empirical data set [3, 7] with step size 1. The

equation (4) means that the p can be set to the minimum

value index of error. In equation (5), the use of two

evaluation indicators is to evaluate the trend effect from

different aspects.

C. Parameter sensitivity analysis

To illustrate the parameter selection procedure and

analyzing the performance of DEITD, an example of

ambient frequency data is used. A 100-second ambient

data with 10 Hz reporting rate is used. The DEITD

results and the corresponding Fast Fourier Transform

(FFT) results are shown in Fig. 1, the p is set to 4

here. According to the amplitude spectrum of FFT, the

frequency components have been divided into different

intervals for the 1st to 3rd mode components. Particularly,

the FFT of the trend component only contains the DC

frequency, indicating that the trend of ambient data has

been successfully extracted.

Based on the step (1) of DEITD, the p is first selected

using the error criteria. Furthermore, the trend of ambient

data of three p models with small errors are presented in

Fig. 2. Compared with ITD, it shows that the DEITD can

fit the ambient data more precisely when p = 4 because

only 0.0016 error is obtained. However, the DEITD get a

smoother trend when p = 5 in DEITD. This is because

the trend component is split into multiple proper rotation

components.
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Fig. 2. The detrending performance with different p. The sum of
eRMSE+eMAPE errors are 0.0016, 0.0035, and 0.0021 for the DEITD
(p = 4, p = 5), and ITD, respectively.

III. YULE-WALKER BASED ARMA MODEL

After the trend is removed, the mode parameter

estimation method is developed to accurately identify the

oscillation. An ARMA process technique is used, where

the AR parameters are calculated using the Yule-Walker

(YW) method. The advantages of the YW based ARMA

are that it is robust to both ring-down and ambient signals.

The ARMA process can be seen as two processes of

AR and MA parts, which can be expressed as

x̄t =
h∑

i=1

ϕix̄t−i −
m∑
i=1

θiut−i (6)

where ϕi is the coefficients of AR part, which captures

the observed mode information including the frequency

and damping ratio. θi is the coefficients of MA part, it

captures the influence of controls. ut denotes the white

noise, which represents the load changes in system.

To obtain the oscillation modes, the pole coefficients ϕi

should be derived. To solve this problem, the YW method

is used which based on the autocorrelation function of x̄t.

The autocorrelation function can be given as

rk =
1

n

n∑
i=k+1

x̄ix̄i−k (7)

In ARMA model, the following relation can be

satisfied

rk = −
h∑

i=1

ϕirk−i, k ≥ h (8)

The pole coefficients ϕi can be calculated using the

following equations⎡
⎢⎢⎢⎣
rm+1

rm+2

...

rm+M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rm rm−1 · · ·rm−h+1

rm+1 rm · · ·rm−h+2

...
...

...
...

rm+M−1rm+M−2 · · · rm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ϕ1

ϕ2

...

ϕh

⎤
⎥⎥⎥⎦

(9)

where M ≥ h. The equation (9) is called the YW equation.

Then the estimated mode can be obtained from the root

of the following polynomial.

λh +
∑h

i=1
ϕiλ

h−i = 0 (10)

Denoting its root as λi, the frequency and damping ratio

can be calculated through solving equation (11)

fi =
fs
2π

|ln(λi)|, di =
−Re{ln(λi)}

|ln(λi)| (11)

where fs is the sampling rate of xt. The amplitude

and phase of oscillation mode can be derived using

the Vandermonde matrix and Total Least-Squares (TLS)

technique in [16].

A. Parameter selection and result evaluation

The accuracy of oscillation results are affected by the

parameters of ARMA, including the parameters h and m.

To select the suitable parameters, the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC)

are used. Generally, the lower AIC and BIC value mean

a better ARMA model. According to the lowest AIC and

BIC values, different parameters h and m are tested using

the ambient data to determine the final parameters.

Meanwhile, to evaluate the accuracy of the results, the

SNR is used [17], which can be derived as

SNR = 10log

∑n−1
i=0 x2

t [i]∑n−1
i=0 (xt[i]− x̂t[i])2

(12)

where x̂t is the fitting values of xt based on the estimated

parameters. Generally, a higher SNR value denotes the

better result.

IV. OSCILLATION ANALYSIS FRAMEWORK

Based on the proposed DEITD and ARMA models, this

section proposes a framework called DEITD-ARMA for

the oscillation mode analysis. The flowchart is shown in

Fig. 3. It is clear that the DEITD-ARMA can be divided

into two parts:

1) Detrend analysis: The trend of the ambient or the

ring-down data is detected by DEITD. Then the trend

is obtained from the baseline signal. The detrend is

finished by removing the trend from input data xt.

The object oscillation signal is obtained as x̄t.

2) Oscillation mode recognition: The x̄t is fed into

ARMA, the YW method is utilized to calculate the

pole. Then the parameters of oscillation modes can

be developed.

After that, the proposed framework DEITD-ARMA is

evaluated by simulation and actual data experiments.

Fig. 3. Oscillation mode analysis framework of ambient data using
DEITD-ARMA.

V. EXPERIMENT ANALYSIS

To verify the effectiveness of the proposed

DEITD-ARMA, different experiments are conducted

including the simulation signal, two-area, four generator

testing system, and ambient data from FNET/GridEye

server. Particularly, the ring-down data is also used to

verify the effectiveness of the proposed method. To ensure

data consistency, the sampling rate is set to 10 Hz. For

the ambient data, the 10 minutes window size is used.

A. Simulations results

The simulation numerical model is

xt =
∑I

i=1
Aie

(σit)sin(wit+ a0i) + xtre + ε (13)
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TABLE I
RESULTS COMPARISON USING SIMULATION SIGNALS

Models
Estimation parameters

f0 d0(%) f1 d1(%)

Benchmark 0.2000 19.51 0.8000 2.980

EMD-ARMA 0.2106 24.75 0.7997 3.031

Filter-ARMA 0.1974 19.46 0.7999 3.055

ITD-ARMA 0.2028 19.79 0.7993 3.068

Prony [18] 0.2105 13.09 0.8021 3.061

Matrix-pencil [19] - - 0.8001 13.39

DEITD-ARMA 0.1998 19.11 0.7996 3.024

where Ai, σi, wi, a0i are the amplitude, attenuation factor,

angular frequency, and phase angle, respectively. The trend

xtre and noise ε are also added to simulate the true low

frequency oscillation signal.

In this case, two different modes are designed, of

which the signal is shown in Fig. 4. Here, the EMD

method is compared with the DEITD. It shows that

EMD has a greater fluctuation especially between 20

to 40 s. The benchmark parameters and the estimated

results are listed in Table. I. The parameters Ai, σi, wi, a0i
of these two modes are {2.0,−0.25, 0.4π, π} and

{1.5,−0.15, 1.6π, π/2}. The damping ratio of these two

modes are 19.51% and 2.98%, respectively. The 30 dB

white Gaussian noise is superimposed to simulate signal

scenarios. The parameters of DEITD-ARMA are set to

p = 4, ns = 0.5, and N = 30.

Fig. 4. Simulation low frequency oscillations with two different modes.

As can be seen from Table I, the performance of

EMD and ITD based detrend methods obtain lower

accuracy. The EMD-ARMA model has more than 0.01

Hz and 5.24% damping ratio absolute errors for f0
and d0. A high-pass filter with a cutoff frequency of

0.1 Hz is used (Filter-ARMA). Competitive results are

shown for Filter-ARMA. However, the accuracy of f0
and d1 has lower performance. The Prony method [18] is

sensitive to the noise so low accuracy results are obtained.

Moreover, it shows that only one mode is estimated using

Matrix-pencil [19]. Compared with other methods, the

proposed DEITD-ARMA reaches the highest accuracy

even under 30 dB noise, where the maximum absolute

error of the frequency and damping ratio is 0.0004 Hz

and 0.044%.

B. Simulations on two-area, four generator IEEE system

A typical IEEE testing system of a two-area, four

generator power system is shown in Fig. 5. Both areas

of the IEEE system include a synchronous generator with

a rated power of 900MW. The main parameters can be

found in [20].

To identify the oscillation mode of the system, the

input is selected as a short-circuit fault on the AC tie

Fig. 5. Configuration of a two-area, four-generator IEEE system.

TABLE II
RESULTS COMPARISON USING SIMULATION SIGNALS

Methods
Estimation parameters

f0 d0(%) f1 d1(%)

Benchmark 0.649 4.63 1.0730 6.53

Prony [18] 0.6553 4.68 1.1661 10.08

Matrix-pencil [19] 0.6584 2.15 1.1277 6.19

DEITD-ARMA 0.6518 4.50 1.1808 6.39

line, which can be regarded as an impulse function since

the disturbance time is relatively short (1ms). The output

can be chosen as the rotor speed difference between

generator G1 and G3. A set of 30-second data with 10

Hz sampling rate is collected from Matlab/Simulink. The

linear analysis tool is used to calculate the benchmark

oscillation frequency and damping ratio.

Fig. 6. Inter-area oscillation in two-area, four-generator IEEE system.

The rotor speed signal is shown in Fig. 6, while the

identified oscillation modes are listed in Table. II. It

can be seen that there are two low frequencies in this

two-area, four-generator IEEE system. It shows that the

damping ratio of Prony and matrix-pencil is not accuracy,

in which the absolute errors are 2.15% and 3.55% for

the f0 and f1, respectively. Overall, both damping ratio

of these two modes are accurate for ARMA models. The

two-area, four-generator IEEE system simulation indicates

that the ARMA model has better effect even for multiple

oscillation modes.

C. Results using ambient data

In this section, the ambient data is used to test

the stability and performance of the proposed method.

Specifically, the actual frequency data of two PMUs

(Units 798 and 966) are collected from the Western

Interconnection (WECC) system [21]. The data is

collected on October 4-5, 2019. To analyze the stability,

the oscillation estimation results are calculated using the

data in two days. The window size is 10 min and the step

size is set to 5 min. The parameters of DEITD-ARMA are

set to p = 3, nw = 0.5, N = 30, h = 26, and m = 26.

To verify the effectiveness of DEITD, the residual

characteristics of the detrending data is analyzed first. The

ambient data, the detrending data, and the residual test

of the detrending data are presented in Fig. 7. According

to Fig. 7 (a) and (b), the DC trend component has been

removed successfully. The residual test result demonstrates
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that useful information has been obtained by ARMA

model because the distribution is an approximately normal

distribution.

Fig. 7. The residual test of the ambient data.(a)A 100 seconds frequency
ambient data. (b) The derending data of (a). (c) The standardized residual
test of (b).

The estimated oscillation results of the ambient data

are presented in Fig. 8 and 9. The mean and standard

deviation are provided. In this two figures, the frequency

modes are artificially divided into three intervals including

[0.1−0.3Hz) ∈ f1, [0.3−0.5Hz) ∈ f2, and [0.5−0.9Hz] ∈
f3, and marked with different colors for easy observation.

It is obvious that there are three primary frequency

components in both units. The frequency components are

more accurate than the damping ratio based on the (a)

and (b). In Fig. 8 (b), the calculated standard deviations

of damping d1, d2, d3 are 25.75%, 21.83%, and 54.06%,

respectively. It shows that the standard deviation of the

damping ratio is higher than frequency components. This

reason is that the damping ratio is related to some factors,

including attenuation factor, angular frequency, and noise.

The mean results of (a), (b) from Fig. 8 and 9 also

show that the oscillation parameters are similar in the

two units, indicating the robustness of the method. It

should be emphasized that when the damping is higher,

it also has a high variability. This also would be one of

the characteristics of using ambient data for oscillation

analysis. Interestingly, it is found that the frequency is

higher at daytime, and the oscillation is lower during the

work-time, as shown in Fig. 9. This is related to some new

energy equipment and power loads in WECC which may

works at daytime. The estimated frequency components

are very close to those reported in [22]. The damping ratio

is relatively high because the ambient data is used here,

where the event data is used in [22].

As can be seen from Fig. 8(c) and Fig. 9(c), it is

difficult to determine the dominant frequency because the

amplitude are similar for f1 and f2. The amplitude of f3
is much lower, indicating this component is more random.

Overall, it means that the proposed DEITD-ARMA is

suitable for the online low frequency oscillation analysis.

To verify the accuracy of the results, the SNR is

calculated based on equation (12) [23], as shown in Fig.

10. According to equation (12), a better fitting result

corresponds to a larger SNR value. Usually, if the value

of SNR is over 10 dB, then it indicates that the oscillation

results are accurate [23]. The results show that about 15

dB SNR is presented for units 798 and 966, indicating the

effectiveness of the DEITD-ARMA.

VI. CONCLUSIONS

In this paper, a dynamic ensemble ITD and YW

based ARMA model is proposed to automatically estimate

the low frequency oscillation from the ambient data.

The trend of the ambient data has been removed by

optimizing the decomposition components in DEITD.

The experimental results show that the DEITD has a

better trend fitting effect compared with conventional

decomposition methods (such as EMD and ITD).

Thereafter, the detrending oscillation signal is estimated

by the YW based ARMA model. Simulation results verify

that the ARMA has a better estimation accuracy than the

Prony and matrix-pencil methods. Different experiments

using the simulation and ambient data are conducted to

verify the proposed DEITD-ARMA. Finally, the stability

and real-time performance have been verified by using the

ambient data from two PMU units in the WECC system.

Further work will focuses on reducing the effect of noise

on the oscillation detection.
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