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Abstract—Grid-forming converters have recently been gaining
more interest as a viable alternative to replace bulk synchronous
generation for supporting and sustaining medium to low voltage
grids. While the ability of grid-connected converters to support
bulk generation has been thoroughly investigated, the capacity
and behavior of converters that would replace bulk generation
are not well defined. In an inverter-dominated system with one
or more grid-forming inverters, maintaining dc-link stability
is equally, if not more, important as maintaining frequency
stability. To this end, and to better understand the behavior
of grid-forming converters with different types of controllers,
this paper derives the small-signal models for converters with
nested and single-loop control structures, and compares their
input and output impedance characteristics with and without
synchronization. The analysis of input impedance provides insight
into the impact of each grid-forming converter controller on
upstream (dc) elements such as the dc-link and non-stiff dc
sources, while the analysis of output impedance provides insight
into the interaction of the controller with downstream (ac)
elements of the grid such as the line impedance and loads. The
analytical results are verified using simulation and experimental
measurements.

Index Terms—Grid-forming converter, impedance, small-
signal, feedback loops, dc-link stability.

I. INTRODUCTION

As it becomes more feasible to sustain an isolated grid
with renewable energy sources, the role of ’grid-connected’
converters will shift from that of supporting bulk generation
to maintaining a stable grid voltage while feeding the loads,
i.e. forming the grid. Hence, grid-forming converters have
recently gained traction [1]–[4]. Many existing primary control
techniques for grid-forming converters are derived from the
established control methods for synchronous generators that
these converters are meant to replace. However, some of these
methods are not suitable for grid-forming converters.

The dc-link voltage between the renewable source or up-
stream dc-dc converter and the dc/ac converter is often con-
sidered analogous to the mechanical inertia of synchronous
machines [5], and is utilized in various virtual inertia and
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frequency synchronization methods. However, in reality, the
dc-link has limited reserves (unless an extremely large and
expensive capacitor is used) and does not respond instanta-
neously to changes in frequency [6]. Moreover, the dc-link has
different interactions with conventional synchronous machine
controllers which can cause voltage instabilities.

Most conventional controllers for grid-forming converters
use some form of voltage and frequency droop control using
a nested control loop structure [7]. The outer loop regulates
the voltage while the inner loop controls the current, each
using feedback from the input and/or output terminals of the
converter. These multiple feedback loops can destabilize the
dc-link voltage, even when it is explicitly controlled. This
paper analyzes the impact of the controller structure on the
input impedance of a grid-forming converter to illustrate this
behavior.

Several papers have been published in recent years that
focus on the impedance interaction of grid-tied converters
and the use of impedance-based methods to analyze the
stability of converters and controller design [8]–[12]. Both
input and output impedance (or admittance) studies for dc/ac
converters are usually focused on the ac-side impedance, and
the distinction between the two may depend on whether the
converter is used in rectifying mode [11] or inverting mode
[13]. Hence, dc-link dynamics are often disregarded, and the
impact of any converter controller on the dc-link dynamics is
rarely considered in impedance-based analyses.

This paper aims to fill that gap by representing the dc-
link dynamics in the closed-loop input (dc) impedance of the
converter and applying established impedance-based methods
to deduce the impacts of controller feedback loops on dc-
link voltage stability. Although these dynamics are commonly
studied for load converters [14], [15], this paper will demon-
strate similar phenomena in dc/ac source converters. While the
upstream dc/dc converter or dc source also interacts with the
dc link, this discussion will be focused solely on the impact
of the dc/ac converter system.

A multitude of papers studying the input and output
impedance of grid-connected converters attribute any insta-
bility or issues caused by the converter controller to the



phase-locked loop (PLL) present in the controller [11], [13],
[16]–[18]. However, in grid-forming inverter control, this
PLL is replaced by either some form of droop control for
parallel operation of multiple grid-forming inverters, or by a
constant reference in the case of a single grid-forming inverter
with/without multiple grid-following inverters. But even in the
absence of a synchronization loop, there are certain issues
caused by the use of multiple feedback loops. This will be
shown by the impact of multiple feedback loops on the output
admittance of a grid-forming converter.

The remainder of the paper is divided into four sections.
Section II includes the derivation of the small-signal mod-
els for both dual and single feedback loop controllers both
with and without droop control in grid-forming converters.
These models are used to analyze the impact of the two
control structures on the closed-loop input impedance and
output admittance of the converter. Section III compares the
results obtained from the small-signal impedance analysis of
the controllers. Section IV describes the verification of the
analytical results on a hardware platform. Finally, Section V
concludes the paper with a summary of the observations.

II. INPUT AND OUTPUT IMPEDANCE OF GRID-FORMING
CONVERTERS

This section will focus on deriving the transfer functions
of open-loop and closed-loop input impedance and output
admittance for nested control loops and a single control loop
in a grid-forming converter. Subsequently, an outer loop with
droop regulation is added to both controllers to determine the
impact of synchronization on these two control structures. The
nested control structure consists of the same voltage control
loop as that of the single control loop structure as well as an
inner control loop with d-q decoupling, as shown in Fig. 1.
The voltage reference can be constant for single operation or
be received from the droop control loop for parallel operation
of a grid-forming converter.

Fig. 1. Grid-forming converter with nested control loops.

A. Single grid-forming converter without droop control

In a nested controller, the output current feeds into the inner
feedback loop while the output voltage is used in the outer
feedback loop. In this case, the d-axis voltage reference is set
to the nominal value or provided by the droop control loop,
and the q-axis reference is set to zero. The equivalent circuit

model of a grid-forming inverter interfaced with a limited dc
source is shown in Fig. 2. Here, C is the dc-link capacitor,
rf and Lf represent the L-filter resistance and inductance,
respectively, and ωs is the nominal frequency.

Fig. 2. Equivalent circuit model of grid-forming converter [19].

The small-signal state space model for the inverter, which
will be used to analyze the impact of the controller on the
input and output behavior of the inverter, is defined by the
following set of transfer functions [19]:[

vin
io

]
=

[
Zin Toi Gci

Gio Yo Gco

]
.

iinvo
d

 (1)

where Zin = [Zin] is the input impedance,
Toi =

[
Toi d Toi q

]
is the output to input (voltage) gain,

Gci =
[
Gci d Gci q

]
is the inner control loop gain,

Gio =

[
Gio dd Gio dq

Gio qd Gio qq

]
is the input to output (current)

gain,

Yo =

[
Yo dd Yo dq

Yo qd Yo qq

]
is the output admittance, and

Gco =

[
Gco dd Gco dq

Gco qd Gco qq

]
is the outer control loop gain.

In these functions, the input variables are dc current
(iin = idc), ac voltage (vo = [vod voq]

T ), and duty cycle
(d = [dd dq]

T ). The output variables are dc voltage (vin = vdc)
and ac current (io = [iod ioq]

T ). Fig. 3 shows the small-
signal representation for the nested-loop transfer functions
when the grid voltage is regulated by the inverter and does
not require droop control. The open-loop gain and impedance
values of these transfer functions are calculated by setting the
perturbations from the remaining inputs in the matrix to zero.

The outer control loop regulates the ac voltage as described
by the following equations:

i∗od = Gv−PId(v
∗
d − vod) (2)

i∗oq = Gv−PIq(v
∗
q − voq) (3)

where Gv−PI =

[
kvp +

kvi

s 0

0 kvp +
kvi

s

]
is the proportional-

integral (PI) control gain for the outer control loop and v∗ =
[v∗d v

∗
q ]

T is the voltage reference with v∗q set to zero.



Fig. 3. Transfer function representation of input and output
dynamics for nested-loop controller without droop.

The inner feedback loop uses current references from the
outer feedback loop to control the PWM output as described
by the following two equations:

u∗od = Gi−PId(i
∗
od − iod)− ωsLiLq (4)

u∗oq = Gi−PIq(i
∗
oq − ioq) + ωsLiLd (5)

where

Gi−PI =

[
kip +

kii
s 0

0 kip +
kii
s

]
is the PI control gain for the inner control loop and

Gdec =

 0 −ωsLf

ωsLf 0


is the decoupling gain used to reduce the impact of cross-
coupling caused by the output filter inductor (Lf is the filter
inductance and ωs = 2πfs is the nominal frequency).

The ac (voltage and current) control delays are assumed to
be the same and are calculated using the second order Padé
approximation of the exponential function in the matrix:

Hout =

[
e−0.5Tss 0

0 e−0.5Tss

]
.

From Fig. 3, the closed-loop input impedance and output
admittance for a single grid-forming inverter with nested-loop
controller can be derived as:

Zin c = Zin −Gci(Gdec −Gi−PI)HoutGio (6)

Yo c =
Yo +GcoGi−PIGv−PIHout

I +Gco(Gdec −Gi−PI)Hout
(7)

On the other hand, a single-loop grid-forming converter has
a single feedback loop to directly control the output voltage of
the converter and does not use an inner current control loop.
In this case, the control functions can be described by:

u∗od = Gv−PId(v
∗
d − vod) (8)

u∗oq = Gv−PIq(v
∗
q − voq) (9)

Fig. 4. Transfer function representation of input and output
dynamics for single-loop controller without droop.

In the absence of a synchronization loop, the small-signal
representation of the transfer functions of the single-loop
grid-forming controller is shown in Fig. 4. From this model,
the closed-loop input impedance and output admittance for a
single grid-forming inverter with single-loop controller can be
derived as:

Zin s = Zin (10)

Yo s = Yo +GcoGv−PIHout (11)

B. Parallel grid-forming converter with droop control

Droop control is ubiquitous in parallel operation of grid-
forming inverters. Therefore, to study how synchronization
control can alter the impact of the controller structure, the
small signal model of both nested- and single-loop controllers
is extended to include an outer loop with droop regulation [20].
More specifically, the active power-frequency and reactive
power-voltage droop control method is incorporated into both
models.

Fig. 5 shows the small-signal representation of the addi-
tional droop transfer functions along with the original model
of the nested-loop controller, in which the droop control can
be described as follows:

[θ v∗]T = Gdrp(SV io + SIvo) (12)

where Gdrp = GtGmGlpf is the droop gain,

Gt =

[
1
s 0
0 1

]
is the integral gain,

Gm =

[
mp 0
0 mq

]
is the droop coefficient matrix, and

Glpf =

[
ωf

s+ωf
0

0
ωf

s+ωf

]
represents the low-pass filter for

power measurements.



SV =

[
Vd Vq
Vq −Vd

]
and SI =

[
Id −Iq
Iq Id

]
are the steady-state

values for d-q axis voltage and current measurements which
are used to calculate the active and reactive power. In this
paper, capitalized variable names indicate steady state values.

Fig. 5. Transfer function representation of input and output
dynamics for nested-loop controller with droop.

In the case of parallel operation of grid-forming control,
there exists a separation between the d-q axes of the grid
and the converter. This shift from this synchronization-affected
frame is included in the form of the following gains:

Gri =

[
−Iq 0
0 Id

]
for droop-affected d-q current,

Grv =

[
−V s

q 0
0 Vd

]
for droop-affected d-q voltage, and

Grd =

[
−Dq 0
0 Dd

]
for droop-affected d-q duty cycle.

Gvv =

[
0 1
0 0

]
is the droop to voltage and frequency reference

gain.

The closed-loop input impedance and output admittance for
a nested-loop controller with droop regulation can then be
derived from Fig. 5 as:

Zin cd = Zin −GciGdcGio (13)

Yo cd =
Yo +GcoGdv

I +GcoGdc
(14)

where
Gdc = GrdGdrpSVHout + (Gdec −Gi−PI)Gcsi

Gdv = GrdGdrpSIHout

+Gi−PIGv−PI(GvvGdrpSIHout −Gcsv)

Gcsv = Hout +GrvGdrpSIHout

Gcsi = Hout +GriGdrpSVHout

Fig. 6. Transfer function representation of input and output
dynamics for single-loop controller with droop.

The closed-loop input impedance and output admittance for
a single-loop controller with droop regulation can then be
derived from Fig. 6 as:

Zin sd = Zin −GciGdcsGio (15)

Yo sd =
Yo +GcoGdvs

I +GcoGdcs
(16)

where
Gdcs = GrdGdrpSVHout

Gdvs = GrdGdrpSIHout +Gv−PI(GvvGdrpSIHout −Gcsv)

III. ANALYTICAL RESULTS

The transfer functions derived in the previous section were
analyzed in Matlab using the converter and controller parame-
ters shown in Table I. All the plots are wrapped within ±180°.

A. Single grid-forming converter without droop control

Fig. 7 presents the Bode plots for the input impedance of the
single grid-forming inverter, with Zin o being the open-loop
input impedance, Zin c being the closed-loop impedance for
a converter with nested controls, and Zin s being the closed-
loop impedance for a converter with a single feedback loop.
The open-loop input impedance is determined by the dc-link
capacitor. In the absence of the ac current feedback loop, the
single-loop controller has no impact on the input impedance.

The nested-loop controller with voltage and current feed-
back loops renders a capacitive effect on the dc impedance



TABLE I. Converter and Controller Parameters

Steady-state Converter Parameters
Nominal ac voltage: Vac 294 V (peak)
Nominal ac current: Iod, Ioq 26.7 A, 0 A
Nominal dc voltage: Vdc 400 V
Nominal dc current: Idc 15 A
dc-link capacitor: C 5 mF
L-filter inductance: Lf 0.575 mH
L-filter resistance: rf 0.2 Ω

Nominal frequency: fs 60 Hz
Duty cycle: Dd, Dq 0.337, 0.059

Controller Gains
Sampling period: Ts 100 µs
Switching frequency: ωsw 10 kHz
Inner controller gains: kip, kii 0.105, 35
Outer controller gains: kvp, kvi 0.008, 40
Filter frequency: ωf 1500 Hz
Droop coefficients: mp, mq 0.001, 0.001

at lower and higher frequencies but has a negative resistance
effect around the controller bandwidth. As described in [21],
this negative resistance behavior of dc/ac converters leads to
dc voltage instability in upstream dc/dc converters because
the converter decreases the voltage when current increases in
trying to keep the load constant. Ref. [22] explains how tight
closed-loop controllers exacerbate this phenomenon. However,
the single closed-loop does not create the same negative
resistance effect or the increased dc impedance at lower
frequencies.

Fig. 7. Open loop and closed-loop Bode plots of converter
input impedance.

Fig. 8 presents the inverter output admittance, with Yo o
being the open-loop admittance, Yo c being the closed-loop
admittance with nested control loops, and Yo s being the
closed-loop admittance with a single control loop. The open-
loop admittance is determined by the filter inductor. The
nested-loop control has an increasing negative admittance
(reducing negative impedance) with increasing frequency and
is non-passive at all frequencies. The closed-loop admittances
along both axes lie in the negative resistance region around
the controller bandwidth.

Nested-loop d-q coupling also increases at higher frequen-
cies. The single-loop controller has higher positive admittance
at lower frequencies which is passive. It reduces and becomes

Fig. 8. Open loop and closed-loop Bode plots of converter
output admittance.

non-passive in the control bandwidth region. These non-
passive regions show that the control delay from the feedback
loops reduces the system passivity even when the output filter
is designed to be passive. The control delay from the single
feedback loop impacts the higher frequency region while the
control delays from the double feedback loops affect the
lower frequency region. This non-passivity can lead to unstable
system oscillations under weak grid conditions [23].

B. Parallel grid-forming converter with droop control

Fig. 9. Bode plots comparing converter input impedance for
nested-loop controller with and without droop.

From the input impedance results for nested-loop controller
in Fig. 9, it is clear that the outer droop loop only has
an impact at lower frequencies, closer to the droop control
loop bandwidth. The droop control loop increases the input
impedance at lower frequencies but does not reduce the
negative resistance behavior of the nested-loop controller. The
results in Fig. 10 show that droop control has little to no impact
on the output admittance, especially for the d-d and q-q axes.

Fig. 11 shows that the droop control loop only has an
impact at the lower frequencies for the single-loop controller,
rendering an overall capacitive effect while increasing the
input impedance. Fig. 12 shows that droop control has a more
significant impact on the output admittance, making it more



Fig. 10. Bode plots comparing converter output admittance
nested-loop controller with and without droop.

negative and non-passive. The power measurements used in
droop control also increases coupling between the d- and q-
axes at lower frequencies.

Fig. 11. Bode plots comparing converter input impedance for
single-loop controller with and without droop.

Although the passivity-reducing effect of current control
has been previously studied in grid-connected inverters [24],
this analysis demonstrates similar behavior for grid-forming
inverters as well. It is clear from both cases with and without
droop control that using the current feedback loop significantly
reduces the passivity of the system and can be detrimental to
the system stability in inverter-dominated weak grids.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

A single grid-forming inverter is simulated in MAT-
LAB/Simulink using both single- and nested-loop controllers
with an average model-based voltage source converter, con-
nected to an impedance load. The system and control param-
eters used for the simulation are the same as those used in the
baseline analysis (Table I). The dc-link voltage is measured
during a step load change from 5 kW to 7 kW at 1 s, and
shown in Fig. 13.

These results show that for the same change in load, the dc-
link voltage for the nested-loop controller experiences a larger
drop after the load change than the single-loop controller. This

Fig. 12. Bode plots comparing converter output admittance
single-loop controller with and without droop.

Fig. 13. DC-link voltages for nested- and single-loop con-
trollers during step load change.

indicates that the dc-link behind the nested-loop controller is
more susceptible to disturbances as a result of changing load
or grid conditions.

Fig. 14. Bode plots of closed-loop input impedance from
analytical model and simulation measurements.

The input impedance for the single-loop controller is also
measured using Simulink’s Impedance Measurement function



and compared with the analytical results. Fig. 14 shows that
the analytical and simulation results match very well.

Experimental tests are performed to validate the analysis
results for a single-loop controller with a single grid-forming
inverter. A small-signal voltage injection method is used to
measure the closed-loop output impedance of a grid-forming
converter with single-loop control in the CURENT hardware
testbed [25], [26], shown in Fig. 15b. In Fig. 15a, the top
converter is the grid-forming (source) inverter being tested
while the bottom converter serves as the current-controlled
load which also injects high-frequency voltage perturbations.
The two identical converters have common dc and ac sides (by
nature of the testbed design), as well as the same L-filters on
the ac side. The ac currents and voltages are measured using
an oscilloscope. To match the testbed hardware settings, the
single-loop analysis results in this section are derived using
the values in Table II.

(a)

(b)

Fig. 15. Experimental setup for inverter impedance mea-
surement: (a) Experimental setup schematic (b) CURENT
Hardware Testbed converter cabinet with inverters and filters.

To solve the 2-by-2 matrix of the output ac admittance in the
d-q axes, two sets of d-q voltage and current measurements
(vd, vq and id, iq) are used as shown in (17) [27]. One set
of measurements is acquired for high-frequency injections in
the d-axis voltage, and the second set is from high-frequency
injections in the q-axis voltage. To reduce the number of mea-
surements as well as data processing, the primary phase (A)
is aligned along the d-axis to obtain vd and id measurements,
and then along the q-axis to obtain vq and iq measurements
for each set of injections. This eliminates the need for sensing
the other phases and using Park transformations.[

Yodd Yodq
Yoqd Yoqq

]
=

[
id1 id2
iq1 iq2

] [
vd1 vd2
vq1 vq2

]−1

(17)

TABLE II. Experimental Setup Parameters

Nominal ac voltage: Vac 40 V (peak)
Nominal ac current: Iod, Ioq 27.44 A, 0 A
Nominal dc voltage: Vdc 100 V
Nominal dc current: Idc 13.9 A
dc-link capacitor: C 500 mF
L-filter inductance: Lf 0.575 mH
L-filter resistance: rf 0.2 Ω

The measurements collected from the oscilloscope are
processed through a Fast Fourier Transform in Matlab to
obtain the complex admittance values for the range of injected
frequencies (100 to 2000 Hz in intervals of 50 Hz). These
values are then used to estimate the transfer functions of the
measured output admittance matrix, and to draw the Bode plots
for comparison.

The results shown in Fig. 16 depict the measured impedance
as Y meas and the analytically derived impedance as Yo s.
The phase values are wrapped between −180° and +180° to
show and compare the results more clearly. The results from
the experimental measurement match the analytical values
very well.

Fig. 16. Bode plots of closed-loop output admittance from the
analytical model and experimental measurements.



V. CONCLUSION

Small-signal impedance analysis is used in this paper to
compare the behavior of multiple feedback loops to a single
feedback loop in a grid-forming converter controller. Small-
signal models are derived for each type of controller to analyze
the closed-loop input impedance and output admittance of
the converter. The analytical results are also verified using
simulation and hardware measurements.

This study demonstrates the existence of negative resistance
behavior in both the input impedance and output admittance of
the commonly-used cascaded-loop controller in grid-forming
inverters. The negative resistance behavior on the input side
can lead to dc-link voltage instability, and the non-passive
output admittance can jeopardize the ac system stability under
weak grid conditions. While the single-loop controller does not
impact the dc impedance, the control delay inevitably creates
a non-passive region in the output admittance. The addition
of the droop control loop does not exacerbate or alleviate the
issues caused by the nested-loop controller, but it does make
the single-loop output admittance less passive.

Hence, even though inner current control loops are suitable
for grid-following inverters and useful in current limiting
during transients, their feedback loop ultimately weakens both
the dc and ac side stability for grid-forming applications.
Ultimately, eliminating the inner current control loop can
improve dc-link stability and increase ac output passivity while
also enhancing the speed of the controller response.
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