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Abstract—This letter investigates a Branching Dueling Q-

Network (BDQ) based online operation strategy for a micro-
grid with distributed battery energy storage systems (BESSs)
operating under uncertainties. The developed deep reinforcement
learning (DRL) based microgrid online optimization strategy can
achieve a linear increase in the number of neural network outputs
with the number of distributed BESSs, which overcomes the curse
of dimensionality caused by the charge and discharge decisions of
multiple BESSs. Numerical simulations validate the effectiveness
of the proposed method.

Index Terms—Deep reinforcement learning (DRL), distributed
energy storage, microgrid optimization, uncertainty.

I. INTRODUCTION

M ICROGRID is a promising concept for addressing the
challenges of integrating distributed renewable energy

and energy storage systems into power networks. Online 
optimization, which schedules the operation of microgrids 
according to the real-time state of the system, is a key
technique to ensure the economic operation of microgrids.

However, the uncertainties of renewable energy bring great 
challenges to the online optimization of microgrids. To ad-
dress this problem, researchers have proposed several online
optimization methods, such as model predictive control (MPC)
[1], and approximate dynamic programming (ADP) based al-
gorithm [2]. Nevertheless, the online optimization performance 
of the above methods relies on forecasting information. So, 
the performance is affected by the forecasting accuracy of 
renewable energy and load power. To decrease the dependence
on forecasting, several other online optimization approaches 
for microgrids have been proposed, including the Lyapunov 
optimization [3], the CHASE algorithm [4], and the recently
developed deep reinforcement learning (DRL) based optimiza-
tion methods (e.g., deep Q Network (DQN) [5], MuZero [6]).

Compared with the conventional microgrid online opti-
mization approaches (e.g., MPC), DRL based algorithms 
learn to operate the system via historical renewable power
generation and load sequences, and can make near-optimal
scheduling without using any forecasting information [6].
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However, the above-mentioned works mainly focus on the
online optimization of a microgrid with a single battery energy
storage system (BESS), which fails to address the distributed
location characteristic of BESSs. With the rapid development
of commercial and home energy storage techniques, plenty of
BESSs will be installed in distributed locations of microgrids.
The huge action space introduced by multiple BESSs brings
great challenges to the discrete-action based DRL optimization
methods. For instance, the number of actions that need to be
explicitly represented in the DQN [5] or MuZero [6] based
agents grows exponentially with an increasing number of
BESSs. As a result, the DRL based optimization approaches
proposed in [5], [6] are difficult to adapt for a microgrid with
distributed BESSs.

To overcome the drawbacks of discrete-action based DRL
optimization methods for microgrids mentioned above, this
letter develops a novel Branching Dueling Q-Network (BDQ)
[7] based online optimization strategy for a microgrid with
distributed BESSs, which is the main contribution of this work.
The designed BDQ based intelligent agent contains a shared
decision module followed by several network branches, one for
each BESS. The advantage of the developed algorithm is that it
can achieve a linear increase of the number of neural network
outputs with the number of distributed BESSs, which will
provide great scalability and increase the applicability of the
algorithm. In addition, to accommodate the characteristics of
historical renewable energy power generation and load power
sequences, a long short-term memory (LSTM) based shared
decision module architecture is designed for the BDQ agent
in this letter to extract features from historical data.

This letter is organized as follows. Section II formulates
the microgrid online optimization problem as a mixed inte-
ger second-order cone programming (MISOCP) problem by
adopting a branch power flow model. In Section III, the
BDQ based online optimization algorithm for the microgrid is
designed. The numerical simulations are presented in Section
IV. Section V concludes this work.

II. OPTIMIZATION MODEL OF THE MICROGRID

The microgrid investigated in this letter works in a grid
connection mode and consists of electric loads, BESSs, con-
trollable distributed generators (DGs) (e.g., diesel generators),
and uncontrollable DGs (e.g., PV panel systems and wind
turbines). The goal of online optimization is to minimize the
operation cost of the microgrid over the optimization horizon
under the necessary constraints. The objective function con-
sists of the fuel cost of controllable DGs, the power exchange
cost of the microgrid and the utility grid, the degradation
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cost of BESSs, and the renewable energy curtailment cost.
The operational constraints considered in this work include
the power generation limit and ramp rate constraints, the
power exchange limit between the microgrid and the utility,
the charge/discharge power limit of BESSs, the branch power
flow constraints, etc. The details of the microgrid optimization
model can be found in equation (1) - (25) of reference [6].

III. BDQ BASED ONLINE OPTIMIZATION STRATEGY FOR
A MICROGRID WITH DISTRIBUTED BESSS

The decision variables of the online optimization problem
include the complex power generation of controllable DGs,
PV panels, and wind turbines; the charge and discharge power
of distributed BESSs; the complex power exchange between
the microgrid and the utility grid; the branch current; the
bus voltage; etc. However, the high-dimensional continuous
actions force us to face the curse of dimensionality when
applying the reinforcement learning methods to solving our
problem. To this end, we develop the BDQ [7] based online
optimization approach for a microgrid with distributed BESSs,
as illustrated in Fig. 1. The BDQ agent only determines the
charge and discharge power of distributed BESSs, while the
remaining decisions are obtained by solving the single-time
period optimal power flow (OPF) subproblem. The advantage
of the proposed optimization architecture is that it can operate
the system without dependence on any renewable and load
power prediction information.

The designed network architecture of the BDQ agent is
also given in Fig. 1. The shared decision module consists of
three LSTM units and a fully connected network. The LSTM
units extract features from load power and renewable energy
power sequences, then the extracted features concatenate with
the current state of the microgrid and are then fed into a
multilayer network. The features computed by the shared
decision module are then used to compute the state value
and the state-dependent action advantages on the subsequent
independent branches [7]. Note that each branch corresponds
to a BESS in this work. The state value and the state-dependent
action advantages are combined and input to neural networks
to compute the Q-values for each BESS charge and discharge
dimension. We discretize the charge and discharge decision
of each BESS into n feasible values. The individual branch’s
Q-value at state s when taking decision P b

d can be given by:

Qd(s, P b
d ) = V (s) +

(
Ad(s, P b

d )− 1

n

∑
P b′

d ∈Xd

Ad(s, P b′

d )
)

(1)

where, d ∈ {1, 2, · · · , N} represents the dth BESS; V (s)
is the state value output by the shared decision module;
Ad(s, P b

d ) is the state-dependent action advantage, and P b
d ∈

Xd. Xd represents the feasible action space of the dth BESS.
The neural network weights of the BDQ agent are updated

by minimizing the following loss function:

L = Ξ(s,P b,r,s′ )∼D

[
1

N

∑
d

(yd −Qd(s, P b
d ))2

]
(2)

where, yd is the temporal-difference (TD) target for the BDQ
agent, which can be computed by:

yd = r + γ
1

N

∑
d

Q−d
(
s
′
, arg max

P b′
d ∈Xd

Qd(s
′
, P b′

d )
)

(3)

where, r represents the reward after taking decision P b; γ
is the discount factor. The details of the training process of
the developed BDQ based online optimization algorithm for a
microgrid with multiple BESSs is shown in Algorithm 1.
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Fig. 1. The developed BDQ based online optimization strategy for a
microgrid with distributed BESSs.

Algorithm 1 The training process of the BDQ based online
optimization algorithm for microgrid.

1: Initialize the neural networks of the BDQ agent; Initialize expe-
rience replay memory; Set the total number of episode Ne and
the training frequency fn, and set the training step nstep = 0.

2: for ne ≤ Ne do
3: Randomly select a day of renewable energy and load

sequences from the training data.
4: for t = ∆t, 2∆t, · · · , T do
5: Get the current state information of the microgrid st,

and the previous H hours of solar, wind, and load power.
6: Compute the charge/discharge decisions of the BESSs

using the BDQ agent.
7: Recompute the charge/discharge decisions using ε-greedy

policy.
8: Check overcharge/overdischarge limits and get the opti-

mal decisions P b,∗
d (t) (d ∈ {1, 2, · · · , N}).

9: Solve the OPF sub-problem to get the remaining de-
cisions.

10: Execute the optimal decisions xt to obtain the reward rt,
and calculate the next state of the system st+∆t.

11: Store the data (st, xt, rt, st+∆t) in the replay buffer.
12: if (nstep % fn = 0) then
13: Sample a minibatch of data from the replay buffer.
14: Update the main network weights of the BDQ agent

to minimize the loss function.
15: Update priorities of sampled data.
16: nstep = nstep + 1.
17: Update target network periodically.
18: if (ne % 500 = 0) then . Evaluate every 500 episodes.
19: Evaluate the optimization performance of the BDQ agent.
20: ne = ne + 1.
21: Return the well-trained BDQ agent parameters.
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IV. CASE STUDY

To demonstrate the effectiveness of the proposed BDQ
based microgrid optimization algorithm, we tested the perfor-
mance of the algorithm on a 6-bus microgrid, a modified IEEE
33-bus microgrid, and a modified IEEE 69-bus microgrid.
All the simulations are conducted on an Intel Core i7-8650U
@1.90GHz Windows based computer with 16GB RAM.

The topology of the adopted 6-bus microgrid can be found
in [6], and the utilized training and testing dataset of solar
power, wind power, load power, and electricity price are the
same as in [6]. Although the 6-bus microgrid only contains one
BESS, the proposed BDQ based optimization algorithm is also
suitable. The convergence process of the proposed algorithm
is shown in Fig. 2. From the result, the total returns optimized
by the BDQ algorithm approaches the optimal value optimized
by the MISOCP method under the condition of perfect infor-
mation. Note that the MISOCP method needs to know the
accurate renewable generation and load power information of
all the future time steps, so the optimal objective cannot be
achieved by the method.

To test the online optimization performance of the pro-
posed algorithm, we compared the BDQ based algorithm
with several state-of-the-art online optimization algorithms.
Using the results optimized by myopic policy as the baseline,
the performance improvement of the methods is shown in
Table I. We find that the proposed online optimization algo-
rithm outperforms the Lyapunov optimization, ADP, and Deep
Deterministic Policy Gradient (DDPG) based optimization
algorithms. Although the proposed algorithm performs worse
than the MuZero based online optimization method proposed
in [6], the MuZero based algorithm is difficult to apply in
microgrids with multiple BESSs since the tree search space
increases exponentially with the number of BESSs.
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Fig. 2. The convergence process of the proposed BDQ based online optimiza-
tion algorithm on the 6-bus microgrid system. Blue solid line indicates median
returns across 5 separate training runs. The yaxis represents the average total
returns for the 10 validation days.

To validate the proposed algorithm’s ability to solve the
online scheduling of microgrids with multiple BESSs, the
modified IEEE 33-bus microgrid system, which contains 5
distributed BESSs, was designed, as shown in Fig. 3. Similarly,
the online optimization performance of the proposed algorithm
is evaluated and compared with the state-of-the-art methods.
The results are given in Table II. Note that the MuZero
based approach and look-up table ADP method face the curse
of dimensionality due to the huge action space brought by
multiple BESSs. Thus, the comparable methods include only
the Lyapunov optimization and the DDPG method. Besides,
the average time consumption of the BDQ based algorithm,
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Fig. 3. The diagram of the modified IEEE 33-bus microgrid system.

TABLE I
PERFORMANCE OF DIFFERENT METHODS COMPARED TO MYOPIC POLICY ON

THE 100-DAY TESTING DATASET FOR THE 6-BUS MICROGRID.

Performance
improvement

Mean Maximum Minimum
Standard
deviation

Online
methods

BDQ based
optimization 8.52% 19.94% 3.19% 2.65%

MuZero based
optimization 9.30% 16.68% 5.28% 2.12%

Lyapunov
optimization 3.76% 9.89% 1.93% 1.65%

ADP 6.57% 14.78% 4.16% 1.92%
DDPG 5.55% 9.81% -8.41% 4.16%

Off-line
method

MISOCP (perfect
information) 10.20% 23.28% 6.45% 3.02%

Lyapunov optimization, DDPG, and myopic policy to make
one single time-step scheduling are 0.0438s, 0.782s, 0.035s,
and 0.676s, respectively. It can be found that the proposed al-
gorithm performs better than the compared online optimization
methods, and the scheduling results of the proposed algorithm
are near the optimal value optimized by the MISOCP method
under the condition of perfect information.

To validate the scalability of the proposed BDQ based
scheduling algorithm, the simulations on a modified IEEE
69-bus microgrid system with different number of distributed
BESSs were conducted. The topology and parameters of the
microgrid system can be found in the ’case69.m’ file of
MATPOWER. In the modified system, there are six diesel
generators which are connected to buses 17, 18, 24, 30,
40, and 58, respectively. Three distributed PV systems are
connected to buses 22, 27, and 45, respectively. Three wind
turbines are connected to buses 34, 50, and 59, respectively.
The parameters of DGs and the BESS can be found in [6].
The performance of the BDQ based scheduling algorithm
was tested when there are 1, 3, 5, and 7 BESSs in the
microgrid system. The simulation results are shown in Fig. 4.
It can be found that the scheduling results of the BDQ based

TABLE II
PERFORMANCE OF DIFFERENT METHODS COMPARED TO MYOPIC POLICY ON

THE 100-DAY TESTING DATASET FOR THE IEEE 33-BUS MICROGRID.

Performance
improvement

Mean Maximum Minimum
Standard
deviation

Online
methods

BDQ based
optimization 7.48% 13.48% 4.26% 1.97%

Lyapunov
optimization 3.51% 6.88% 2.22% 1.08%

DDPG 6.64% 15.27% 2.56% 2.82%
Off-line
method

MISOCP (perfect
information) 10.20% 23.40% 6.58% 2.98%
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optimization strategy are near the optimal values optimized
by MISOCP method under perfect information. And the time
consumption of the BDQ agent to make one single time-step
scheduling increases linearly with the number of BESSs. Note
that the performance improvement of the BDQ based schedul-
ing strategy and MISOCP method increase with the number
of BESSs. This can be attributed to the increase in the market
arbitrage capacity and renewable energy integration capacity
of the microgrid as the energy storage capacity increases,
so the gap between the solution of myopic policy and the
optimal solution (under perfect information) becomes larger.
In addition, we also compared the performance improvement
of different methods on the modified IEEE 69-bus microgrid
system with 5 BESSs. The average performance improvement
of the proposed method, Lyapunov optimization, DDPG, and
MISOCP are 6.28%, 2.56%, 5.45%, and 7.61%, respectively.

From the above simulations, the effectiveness and scalability
of the proposed BDQ based online scheduling algorithm were
validated. Specifically, the proposed BDQ based microgrid
scheduling algorithm outperforms many state-of-the-art online
scheduling strategies for microgrids in terms of optimization
performance and time-consuming.
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Fig. 4. Performance improvements of BDQ algorithm and MISOCP method
compared to myopic policy on the modified IEEE 69-bus microgrid.

V. CONCLUSION

A novel BDQ based online optimization algorithm for
microgrids with multiple BESSs was proposed in this letter.
The proposed approach enables the linear growth of the
total number of agent outputs with increasing BESSs, which
provides great scalability and increases the applicability of
the algorithm. The simulations indicate that the online opti-
mization performance of the proposed BDQ based approach
outperforms the state-of-the-art online optimization methods,
such as Lyapunov optimization, ADP, DDPG based method,
and MuZero based method. The easy implementation of the
algorithm gives it a good application prospect.
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