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Abstract—The Frequency-Amplitude (F-A) curve on power 

system oscillation under a large disturbance characterizes how a 

natural oscillation mode transitions to nonlinear oscillations with 

growing amplitudes and decaying frequencies.  The existing 

formulation of the F-A curve is derived by solving elliptical 

integrals on oscillation of a single-machine-infinite-bus equivalent 

about the targeted oscillation mode. The  formula is (I think 

infinite series is the only form?) in a form of infinite series and 

needs to  sum a large number of terms for satisfactory accuracy. 

This paper introduces an explicit, approximate  expression  

obtained from the Homotopy Analysis Method on the F-A curve. 

The proposed F-A curve  expression is derived from an SMIB 

system and verified on the IEEE 3-machine 9-bus system to show 

how the oscillation frequency of a dominant mode varies with 

oscillation amplitude under large disturbances. 

Keywords—Frequency-Amplitude (F-A) curve, Homotopy 

Analysis Method, power system oscillation. 

I. INTRODUCTION  

  As a great threat to power system operations and stability, 
electromechanical oscillations of generators under large 
disturbances can exhibit apparent aharmonicity and nonlinearity 
due to the nonlinear nature of  power systems, and may even 
lead to  system instability. As pointed out in [1], the existing 
small-signal analysis methods ignore nonlinearities of 
electromechanical oscillaitons and are not suitable for analyzing 
or monitoring power system oscillations under large 
disturbances [2]; besides, the measurement-based methods 
including the Prony analysis method, Eigensystem Realization 
Algorithm, Matrix Pencil method, etc., assume a constant 
natural frequency for each oscillation mode, which is only true 
under ideally small disturbances [3][4][5]. To fully study the 
nonlinearities of power system oscillations, paper [1] and its 
following study in [6] proposed the concept of the Frequency-
Amplitude (F-A) curve that describes how the oscillation 
frequency of an undamped single-machine-infinite-bus  (SMIB) 
system can change with the oscillation amplitude. Also, a 
measurement-based estimation method on the F-A curve was 
proposed for the dominant mode of a multi-machine system. 
However, the F-A curve expression is complex and needs to  
sum a large number of series terms for a good numerical 
approximation of the curve because the approach needs to solve 
elliptical integrals of the first kind.  

  To develop an approach for more efficiently solving the F-

A curve for understanding the tendency of oscilation frequency 
change during large-disturbance oscillations, this paper derives 
an approximate F-A curve expression by solving the  swing 
equation of an SMIB system having a single oscillation mode 
using the Homotopy Analysis Method (HAM). The expression 
is also verified on a multi-machine power system. The HAM is 
a mathematical method originates from topology and has 
successful applications in many nonlinear boundary value 
problems including boundary-layer flow and resonance of 
periodic traveling water waves [7]. The HAM uses the solutions 
of  simple linear equations to approximate the solution of a 
nonlinear differential equation. Thus the HAM provides an 
alternative approach for an approximate analytical solution of 
the swing equation unlike traditional numerical approaches. 
Besides, a convergence control parameter can be added to the 
HAM to ensure and accelerate the convergence of the 
approximation, making it superior to other approximation 
methods such as the Adomian Decomposition Method and 
Homotopy Perturbation Method.  

      The rest of this paper is organized as follows. Section II 
describes the mathematical derivation of the F-A curve 
expression for an SMIB system by the HAM. Section III 
presents  one case study of the proposed method on an SMIB 
system and the IEEE 3-machine 9-bus system, respectively. 
Conclusions and future work are discussed in section IV. 

II. APPROXIMATING THE F-A CURVE BY THE HAM   

  This section gives the detailed mathematical derivation of 
solving the swing equation of an SMIB system using the HAM, 
and formulates an approximate F-A curve expression based on 
the first order homotopy solution. 

A. Build a  homotopy equation 

  The swing equation of an SMIB system in the classical 
model is a nonlinear second-order differential equation: 
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where  is the angle deviation from stable equilibrium s, D is 

the damping coefficient, H is the inertia, sis the synchronous 
frequency, and Pmax is the maximum transfer power.  

      As pointed out in [1], the F-A curve with or without 
consideration of damping ratio D are very close to each other. 
So, the damping is ignored in the following derivation, and 
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considering that the rotor angle deviation is a function of time, 
equation (1) is re-written as: 
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where max>0 is the oscillation amplitude. 

      Then, suppose the oscillation frequency to be  and replace 

t with t in (2) to get: 
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t                                       (7) 

      Thus, oscillation frequency  appears in the equation, 
which is oscillation amplitude dependent and should be 
differentiated from the constant natural frequency with the 
linearized model. From (6), a  homotopy equation is built as:  
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where q is an embedded parameter to increase the dimension of 
the system by one to connect its solution with  trivial solutions 

of  linear equations governed by the operator , and () is a 

guessed periodic  seed solution of() which satisfies the 
initial states, as shown below:  

[0,1]q                                      (9) 
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 Obviously, when q=0, eq. (8) becomes: 

0
[ ( ) ( )] 0                                 (12) 

This is a linear equation, and the corresponding solution is: 

00( ) ( )q                                (13) 

When q=1, eq. (8) is exactly the nonlinear differential equation 
(6) to be solved. 

      Thus, when the embedded parameter q changes smoothly 
from 0 to 1, the homotopy equation (8) changes from a simple 
linear differential equation (12) to a nonlinear differential 

equation (6). Because the solution of in (8) depends also 

on the value of q, is now a function of both  and q, 

i.e.(q), and note that is a function of q, i.e.(q. 

B. Solution approximation based on Taylor series 

      The solution of (8) can be formulated by Talyor series: 
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The solution of the nonlinear swing equation (6) is  
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These two equations mean that the solution of the nonlinear 

equation (6) can be approximated by the solutions k of linear 
equations which are much easier to be solved.  

      However, it is usually impossible to obtain infinite terms of 
the Taylor series to calculate the exact value. And generally, the 
accuracy of the approximation increases, not necessarily in a 
monotonic way, with the number of summed terms if the Taylor 
series converges. Thus, finite terms can be used to calculate an 
approximate value. The first-order homotopy solution is 
derived in the following part. 

C. Derivation of the first-order  homotopy solution 

     The first-order solutions of 2 and denoted by 2
0 and 

1 can be obtained as follows. Firstly, take the derivative of(8) 
with respect to q, and substitute q=0. Then, get: 
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      From (11), the first two terms on the right-hand side of (20) 
become (21) and (22), respectively. 
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      Secondly, substitute identities (23)-(25) below into (22) [8]. 

Here, because max<π, using only three terms on the right-hand 
sides of (23) and (24) would be accurate enough to approximate  

sin(maxcos()) and  cos(maxcos()).  
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      Thirdly, solve 2
0 and 1 with equation (20) and an 

implicit requirement. Here, because the angle oscillation has a 
constant amplitude when the damping is ignored, we need to 

eliminate the term cos() in the right-hand side of (20) as this 

term would bring a term cos() which has a time-varying 

amplitude to the solution of 1. Thus, after substituting (21)-
(25) into (20), there is: 
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      After eliminating the term cos() to satisfy the implicit 
requirement, eq. (20) becomes: 
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      Eq. (28) is a second-order linear differential equation, and 
the solution is easily calculated as: 
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D. High-order homotopy solution 

      High-order solutions 2
n-1 and n can be obtained by 

basically the same steps as the first-order solutions: 

      1)  Take the derivative of (8) with respect to q for n times; 

      2) Substitute the low-order solutions already obtained to the 
equation obtained in step 1; 

  3) Calculate 2
n-1 by eliminating  cos() term; 

      4) Solve a second-order linear differential equation forn. 

E. Approximate  the F-A curve expression 

      Although a high-order solution would generally have a 
better accuracy when finite terms are used to approximate the 
solution, it will significantly increase the complexity of the 
analytical expressions. As a proof-of-concept study on this 
HAM based approach, this paper only focuses on the first-order 
homotopy solution.  
      From (27),  the F-A curve expression can be approximated 
by the first-order homotopy solution as shown in (30). 
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      Because of max<180o, using six terms of Bessel function  

J1(max) already provides a rather accurate result: 
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      Thus, a simple, approximate expression is provided by (30)-
(31) on the F-A curve under large disturbances. 

III. CASE STUDIES ON POWER SYSTEMS 

      This section tests the accuracy of the resulting approximate 
expression on  the F-A curve first on an SMIB system and then 
on the IEEE 3-machine 9-bus system.  

A. Case study on an SMIB system 

      Without loss of generality, first, we build an SMIB system 
with the same parameters D=0, H=3s, Pmax=1.7p.u. and  

s=2π×60 rad/s as in [1]. The equilibrium angles is increased 
from 5o to 25o to test the performance of the approximate 
expression. The simulation results are compared with the 
accurate benchmark results provided by the numerical method 
in [1], as shown in Fig. 1-Fig. 3.   

 

Fig.1. Approximate F-A curve when s =5o   

 

Fig.2. Simulation results of F-A curve when s =15o 

 

Fig.3. Simulation results of F-A curve when s =25o 

      The error of oscillation frequency corresponding to four 
oscillation amplitutes under different equilibrium is shown in 
Table I, where error is defined as: 
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TABLE I.  ESTIMATION ERROR ON AN SMIB SYSTEM 

max 

s 
20o  40o 60o 80o 100o 

5o 0.00 % 0.02 % 0.09 % 0.25 % 0.56 % 

15o 0.06 % 0.20 % 0.35 % 0.53 % 0.94 % 

25o 0.23 % 0.83 % 1.83 % 3.60 % 7.56 % 
      

      From the simulation results, it can be observed that the 

approximate F-A curve has a good accuracy with small s, and 

the error grows with the increase ofs. The reasoning is that the 

nonlinearity of an oscillation is mainly affected by boths, i.e. 
the system stable equilibrium, and the oscillation amplitude 
representing the size of the disturbance. Besides, the increase 
of error is caused by the limited capability of the first-order 
HAM to approximate the solution of  the nonlinear swing 

equation. However, the oscillation amplitude max is generally 
less than 60o in practical, and the corresponding error is less 
than 2% as shown in Table I. Thus, the feasibility of the 
proposed approximation method is validated, and a high-order 
HAM is perfered when nonlinearity is strong.    

      Besides, the method in [1] and the proposed method 
respectively take 0.4 s and 0.001 s to compuate, indicating the 
better time performance of the proposed method. 

B. Case Study on the IEEE 9-bus system 

      An accurate formulation on the  F-A curve of each 
electromechanical mode in a multi-machine system has not 
been solved. Paper [1] hypothesizes that the F-A curve on a 
dominant mode of a multi-machine system also follows the 
same formulation of an SMIB system. Thus, measurement data 
on power system oscillations can be used to identify the F-A 
curve for a targeted mode. This paper adopts the same approach 
to verify the derived approximate expression for a dominant 
mode of a multi-machine system. Measurement data on 
oscillating rotor angles are fitted into the approximate 
expression on F-A curve.  After signal selection and pre-
processing on the data, a number of data points on the 
oscillation  F-A plane can be obtained. Then, the natural 
frequency fn is estimated as the average frequency of those 
points having a small oscillation amplitude. The next step is the 
estimation of the parameters in the expression. Different from 
solving an optimization problem in [1], the unknown term  

cos(s) in (30) can be calculated by (33). The final estimated 
F-A curve expression is obtained by substituting (33) into (30). 
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      The tested IEEE 3-machine 9-bus system is shown in Fig. 
4. As observed from simulation results on the SMIB system, the 
error of the approximate  F-A curve expression grows with the 
increase of the equilibrium angle, which corresponds to the 
increase of its loading level. To fully investigate the 
performance of the proposed method on the IEEE 9-bus system, 
the load and generation are gradually increased from 40% of 
the basecase values, and then the results are compared with the 
benchmark results provided by the numerical method in [1]. 

      There are two oscillation modes in the IEEE 9-bus system, 
whose natural frequencies under the basecase condition are 
0.94 Hz (Mode-1) and 1.76 Hz (Mode-2). Changes of their 

natural frequencies with the loading condition are insignificant 
and are hence ignored in this study. 

 

Fig.4. IEEE 9-bus system 
 

1)  F-A curve of Mode-1 
      In this scenario, a three-phase fault is added on bus 7 at t=1 
s and then cleared at t=0.16 s without tripping any line. 
Generators 1 and 2 participate mainly in Mode-1 around 0.94 
Hz while Mode-2 around 1.76 Hz is relatively quiescent. 
Consider 40%, 70% and 100% of the basecase load level. Fig. 
5-Fig. 7 and Table II compare estimated F-A curves on Mode-
1 obtained by the proposed method and benchmark results. 

 

Fig.5. Estimated F-A curve for Mode 1 under a 40% loading condition 

 

Fig.6. Estimated F-A curve for Mode 1 under a 70% loading condition 

 

Fig.7. Estimated F-A curve for Mode 1 under the basecase condition 



TABLE II.  ESTIMATION ERROR OF MODE-1 

max 

Load 
20o  40o 60o 80o 100o 

40 % basecase 0.04 % 0.05 % 0.12 % 0.29 % 0.61 % 

70 % basecase 0.20 % 1.37 % 3.50 % 7.62 % 18.42 % 

basecase 0.44 % 1.69 % 3.96 % 8.43 % 20.47 % 

 

2)  F-A curve of Mode-2 
      In this scenario, Mode 2 around 1.76 Hz is excited using the 
same approach as [1] while Mode 1 is relatively quiescent. Fig. 
8-Fig. 10 and Table III compare the estimated F-A curves under 
three loading conditions. 

 

Fig.8. Estimated F-A curve for Mode 2 under a 40% loading condition  

 

Fig.9. Estimated F-A curve for Mode 2 under a 70% loading condition 

 

Fig.10. Estimated F-A curve for Mode 2 under the basecase condition 

TABLE III.  ESTIMATION ERROR OF MODE-2 

max 

Load 
20o  40o 60o 80o 100o 

40 % basecase 0.05 % 0.12 % 0.32 % 0.58 % 1.17 % 

70 % basecase 0.06 % 0.25 % 0.69 % 1.40 % 2.93 % 

basecase 0.08 % 1.22 % 3.27 % 7.24 % 17.5 % 

      

    As shown in Fig. 5-Fig. 10 and Table II-III, on both modes, 
the approximate F-A curves based on the first order HAM are 
very close to the benchmark results especially when the system 
is not heavily loaded. For  instance, as shown by Fig. 5, under 
a light load condition, the proposed expression provides a fairly 
accurate approximation of the F-A curve for oscillation 
amplitude growing up to 150o. The increase of the loading level 

will influence the accuracy of the estimated F-A curve with 
large oscillation amplitude but a correct trend can still be 
provided on how frequency decays with the increase of 
amplitude under large disturbances. Besies, the error when 

max is less than  60o which is generally true in practical is less 
than 4%, indicating the feasibility of the method in engineering 
applications. Also, the high efficiency of the proposed method 
is validated by the result: the method in [1] and the proposed 
method take about 0.23 s and 0.002 s, respectly, to compute. 

IV. CONCLUSION 

      This paper proposes an approach for approximating the F-A 
curve by the HAM considering nonlinearities, and a simple 
expression on  the F-A curve is derived based on the first order 
HAM and tested on both an SMIB system and a multi-machine 
system. Although the accuracy could be affected by  system 
loading level, the feasibility, high efficency and potential of the 
proposed approach are verified. The future work will include 
investigations on more accurate expressions based on a high-
order HAM for power system electromechanical oscillations 
with strong nonlinearities.  
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