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Abstract— Artificial intelligence provides a convenient route for 

power grid stability assessment. Compared with simulation-based 
approaches, artificial intelligence can potentially save time on 
model development and numerical computation in stability 
assessment. This paper first reviewed existing literature on using 
artificial intelligence for power grid stability assessment. Then a 
machine-leaning-based tool is presented and developed to assess 
power grid transient stability, frequency stability, and small 
signals stability. Test results verified the accuracy and 
effectiveness of the AI tool for power grid stability assessment.

Index Terms— Artificial intelligence, stability assessment, 
power grid.

I. INTRODUCTION

Power grid stability consists of transient stability, frequency 
stability, small signal stability, and voltage stability (Fig. 1) [1- 
2]. Fast assessment of system stability is useful in many places, 
including day-ahead scheduling, real-time operation, and long- 
term planning. Traditional methods for power system stability 
assessment are based on time-domain simulation, which heavily 
relies on the availability of real-time power system dynamic 
models and requires significant simulation computational 
resources [3-7].

Beside model simulation, another category of methods for 
stability assessment is data-driven methods, as shown in Fig. 2. 
Data-driven methods for stability assessment consists of 
measurement-based methods and artificial-intelligence-based 
methods. Measurement-based methods use measurement data 
to develop simplified models (such as transfer functions or
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computation time compared with time-domain simulation based 
on detailed models [10-13]. However, the development of 
measurement-based simplified models is a non-trivial task [16]. 
In contrast, artificial intelligence based stability assessment is 
data-driven and not directly based on physical principles [17- 
19]. After trained using simulation or measurement data, 
artificial intelligence models can perform stability assessment 
based on system feature inputs.

A number of studies have already tried applying artificial 
intelligence into power system stability assessment [16-20]. 
This paper provides a literature review on existing studies. Most 
existing machine learning based approaches can only assess one 
type of stability. Input features are usually selected based on 
trial and error on a specific machine learning model. This work 
proposed an artificial intelligence tool using the same set of 
input data to assess power system transient stability, small 
signal stability, and frequency stability, simultaneously. The 
accuracy and efficiency of the proposed approach in stability 
assessment is verified on an 18-bus system.

Fig. 1. Stability topics in power grids

Fig. 2. Power grid stability assessment approach categorization

II. LITERATURE REVIEW ON USING ARTIFICIAL INTELLIGENCE 
FOR STABILITY ASSESSMENT

A. AI-based Transient Stability Assessment
Transient stability is the power system ability to maintain 
synchronism when subjected to a severe disturbance, such as a 
short circuit on a transmission line [23]. Existing literature that 
applies artificial intelligence to assess transient stability mainly 
uses three categories of methods: neural network, support 
vector machine [24-26], and decision tree [1], as summarized In 
Table I, Table II, and Table III respectively. Most of these 
studies used the New England 10-machine system as the test 
system. These methods showed high accuracy in classifying 
stable and unstable cases: all methods achieved higher than 96% 
accuracy and some even reached 100% in accuracy. 
Additionally, a few studies tried considering the change of

 



TABLE I.
NEURAL NETWORK (NN) BASED METHODS FOR TRANSIENT STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing # Features Accuracy 
(%)

[2] Extreme learning machines 
(ELM) IEEE 50-bus system 6,345 5,076 1,269 50 100

[9]
Extreme learning machine
(ELM) + trajectory fitting 

(TF)

New England 10- 
machine 10,000 N/A N/A 100 (269) 99.1

[15]
Extreme learning machine 

(ELM) + a decision- 
making process

New England 10- 
machine 4,000 2,000 2,000 N/A 97.92 – 

98.38

[21]
An array of neural 

networks (NN) + an
interpreter

PSB4 system + New 
England 10-

machine
248/300 208/250 40/50 N/A 99.85/100

[22] Probabilistic neural 
network (PNN)

IEEE 68-bus, 16-
generator system + 

three wind 
generation units

190 operation 
conditions and 

three-phase 
faults

N/A N/A 244,
150,100,50 > 99

[27]
Recurrent neural network 
(RNN) + long short-term
memory network (LSTM)

New England 10- 
machine 5,000 3,750 1,250 N/A 100

[29]

Long-short Term Memory 
(LSTM) ensemble neural 

network + decision 
machine

New England 10- 
machine 4,058 3,044 1,014 N/A 100

[31] Extreme learning machine 
(ELM) + Boosting learning

New England 10- 
machine 68,640 N/A N/A 50 (183) 100

[32] Extreme learning 
machine(ELM)

New England 10- 
machine 1,240 864 376 62 98

[34]
Convolutional neural 

network (CNN) + stacked 
auto-encoders (SAEs)

New England 10- 
machine 4,014 2,689 1,325 22 96.78 – 

98.68

[35] Neural network (NN) +
incremental learning

Shandong power
system- 362 buses 945 540 405 N/A 96.6

TABLE II.
SUPPORT VECTOR MACHINE (SVM) BASED METHODS FOR TRANSIENT STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing # Features Accuracy
(%)

[36] SVM + transient energy
function (TEF)

New England 10-
machine 700 500 200 36, 18 97.5 – 100

[39] Ball vector machine (BVM) New England 10-
machine 5,500 4,000 1,500 200 97.1

[41] SVM Priba system: 2484
buses 1,242 994 248 224, 150,

100, 50 94.4

[26] SVM + DT + rotor angles 
trajectory clustering

New England 10- 
machine and IEEE 

145-bus
3,672 1,099 2,573 19

90.74 – 
98.15

94.75 – 
95.41

[42] SVM, Naïve Bayes, decision 
tree IEEE 14-bus 8000 N/A N/A 23 88.2 – 

98.8

[43] SVM + Cost-sensitive ensemble 
learning classifier

New England 10- 
machine 4,290 4,000 290 23 96.4 – 

99.4

[44] Least Square Support Vector 
Machine (LS-SVM)

New England 10- 
machine 6,600 4,620 1,980 39 100

[45]
Reformed support vector

machines + sequential minimal 
optimization (SMO)

New England 10- 
machine 20,000 16,000 4,000 15 96.9

[46] Fuzzy C-means clustering 
algorithm + SVM

IEEE 39-bus 
system 726 556 170 10 100

topology in artificial intelligence models [2,29].
A summary of these methods considering topologies is

shown in Table IV. The most commonly used methods include: 
using the current topology to build the dynamic model and then



TABLE III.
DECISION TREE (DT) BASED METHODS FOR TRANSIENT STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing #
Features

Accuracy 
(%)

[1] Decision tree (DT) + 
regression tree (RT)

Salt River Project (SRP) power 
system 41,412 33,130 82,82 N/A 99.13

[8] Weighted random forest 
(WRF) New England 10-machine 2,000 1,300 700 263 98.79

[14] Random forest (RF) New England 10-machine 2,000 1,300 700 45 99.1

[20] Decision tree (DT) 9-bus dynamic network and 
1,696-bus Iran national grid 513/1,080 N/A N/A 5

79.92 – 100
94.91 – 
99.91

TABLE IV.
LITERATURE CONSIDERING TOPOLOGY CHANGE IN ARTIFICIAL INTELLIGENCE BASED TRANSIENT STABILITY ASSESSMENT

Ref Method to consider topology change
[2] The network is trained based on the current system topology and the loading conditions
[29] Small-height DTs are periodically updated by incorporating the possible changes of the system topology

TABLE V.
OTHER ARTIFICIAL INTELLIGENCE BASED METHODS FOR TRANSIENT STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing # Features Accuracy 
(%)

[28] Deep belief 
network (DBN)

A real regional power 
system in China, 
consisting of 1300
buses, 3215 
transmission lines

10,000 8,330 1,670 1,762 98.02

[30]

Least Absolute 
Selection and 
Shrinkage 
Operator
(LASSO)

A practical 470-bus 
system 1,199 800 399 939 99.75

[33] Type-2 fuzzy 
neural network

New England 10- 
machine 2,000 1,500 500 56 97.51 – 98.31

TABLE VI.
ARTIFICIAL INTELLIGENCE BASED FREQUENCY STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing # Features Accuracy 
(%)

[31]
Single-hidden
layer feedforward 
network (SLFN)

IEEE 14-Bus System;
New England 39-bus 
system

600 480 120 N/A 97.5%

TABLE VII.
ARTIFICIAL INTELLIGENCE BASED SMALL SIGNAL STABILITY ASSESSMENT

Ref Model Test System Samples Training Testing # Features Accuracy 
(%)

[37] Artificial neural 
network

Single machine infinite 
bus system N/A N/A N/A 4 ~90%

[40] Decision tree PST 16-machine test 
system 2,500 N/A N/A 252 99.77%

generate the training dataset [2]; and generating a training 
dataset that covers all possible system topologies before training 
the artificial intelligence model [29]. Several other artificial 
intelligence methods other than the three categories in transient 
stability assessment are listed in TABLE V. These methods 
achieved similar accuracy levels in transient stability 
assessment.

B. AI-based Frequency Stability Assessment
According to the definition from IEEE and CIGRE, 

frequency stability refers to the ability of a power system to

maintain a steady frequency following a severe system upset 
resulting in an imbalance between generation and load [23]. 
Frequency instability occurs in the form of sustained frequency 
swings or large frequency deviations that eventually lead to 
tripping of generating units and/or loads, and system losing 
stability [38]. However, very few studies focused on frequency 
stability assessment using AI. In [31] (Table VI), an artificial 
neural network and power flow information were used to 
predict the frequency stability. The accuracy reaches 97.5%.



C. AI-based Small-signal Stability Assessment
Small-disturbance (or small-signal) rotor angle stability is 
concerned with the ability of the power system to maintain 
synchronism under small disturbances [23]. The disturbances in 
the small signal stability domain are considered to be 
sufficiently small, so that stability analysis can be performed 
based on a linearized representation of the system. Reference
[37] in TABLE VII used neural network to study the small- 
signal stability of a single-machine infinite-bus system under 
different power output and power factor conditions, as well as 
power system stabilizer settings. Reference [40] used a decision 
tree to predict the eigenvalue region of critical modes. These 
studies also reached satisfactory (higher than 90%) accuracy in 
small signal stability assessment.

In general, it can be seen that most AI-based stability 
assessment approaches achieved high accuracy already. 
Overall, neural network has the highest accuracy. decision tree 
and SVM have slightly lower accuracy (Fig. 3). However, in 
existing literature, most machine learning approaches focus on 
one type of stability and select input features based on trial and 
error on a specific machine learning model. Few studies can use 
the same set of input data to assess the system frequency, 
transient, and small signal stability simultaneously.

Fig. 3. Average accuracy comparison of different AI methods.

III. AN ARTIFICIAL INTELLIGENCE TOOL FOR FREQUENCY, 
TRANSIENT, AND SMALL-SIGNAL STABILITY ASSESSMENT

This study proposed a convenient stability assessment tool to 
assess transient stability, frequency stability, and small signal 
stability simultaneously. The overall flow is shown in Fig. 4. 
First, dispatch data from the scheduling model are converted to 
AC power flow. Then multiple scenarios and their stability 
margins are obtained by running time-domain simulation. The 
stability indices are then used to train the artificial intelligence 
model. The trained artificial intelligence model can predict 
stability margin for new power flow scenarios. The inputs, 
outputs, and two artificial intelligence models used in this study 
are listed in Table VIII. The input features include generator 
dispatch levels and transmission network data. The outputs are 
the stability margin indices for different stability issues.

The stability assessment approach is implemented in an 18- 
bus test system. The system has four areas, each with one 
conventional generator. One additional PV power plant is in the 
east area, as shown in Fig. 5. The system has one power flow 
snapshot in every 5 minutes. The total number of power flow 
scenarios is 288 for 24 hours. The inputs for artificial 
intelligence based stability assessment are shown in TABLE
VIII. Among all 288 power flow scenarios, 202 scenarios (70%) 
are randomly selected and used in training. The rest 82 
scenarios are used for testing, The stability assessment accuracy

is assessed by comparing the artificial intelligence outputs and 
the stability margin results from model simulation.

Fig. 4. Flowchart of artificial intelligence based stability assessment.
TABLE VIII. INPUTS AND OUTPUTS FOR ARTIFICIAL 

INTELLIGENCE BASED STABILITY ASSESSMENT
Stability Inputs Outputs Artificial 

intelligence
method

Frequency Frequency nadir after the
largest contingency

Transient Critical clearing time 
(CCT)

Small- 
Signal

 Generator 
dispatch 
levels;

 Transmission 
network. Oscillation damping ratio

+ oscillation frequency

 Neural 
network

 Random 
forests

A. Artificial Intelligence Based Transient Stability 
Assessment
The transient stability margin is measured by the minimum 
critical clearing time (CCT) of the whole system. The critical 
bus in each area are defined as the bus that results in the 
minimum CCT. The CCT values of the critical buses in each 
area are shown as the colored solid line in Fig. 6. The blue dash 
line shows the minimum CCT of the whole system, obtained by 
selecting the minimum CCT of the critical bus in each area.

The minimum CCT of the system is predicted using the 
artificial intelligence model. The comparison of the simulated 
CCT values with neural network and random forests results are 
shown in Fig. 7 and Fig. 8 respectively. Both artificial 
intelligence methods can achieve highly accurate CCT 
prediction.

B. Artificial Intelligence Based Small Signal Stability 
Assessment
In small signal stability assessment, the oscillation damping 
ratio and frequency predicted by artificial intelligence are 
compared with the results from eigenvalue analysis, as shown 
in Fig. 9 and Fig. 10, respectively. (For simplicity, following 
results only show neural network results.) It can be seen that 
both the damping ratio and the frequency can be assessed 
accurately using artificial intelligence.

C. Artificial Intelligence Based Frequency Stability 
Assessment
Similarly, the artificial intelligence based frequency stability 
assessment results are compared with the model simulation 
results. The change of frequency nadir when only inertia 
changes and when both inertia and governor status change are 
shown in Fig. 11 and Fig. 12, respectively. It can be seen that



for both cases, the artificial intelligence can provide accurate 
estimation of the frequency nadir after a frequency event.

Table IX summarized the accuracy and computation time of 
stability assessment using artificial intelligence. It can be seen 
that both random forests and neural network reach high 
accuracy for the three stability assessment tasks using the same 
set of power flow input data. Neural network has higher 
accuracy than random forest except for small signal stability 
assessment. In addition, the artificial intelligence based method 
significantly reduces the computation time compared with 
conventional stability assessment methods. This result indicates 
that artificial intelligence has good capability in stability 
assessment. This approach can save the data preparation efforts 
and benefit multiple applications in which accurate and fast 
stability assessment is desired, such as real-time security margin 
assessment, short-term stability prediction for system 
adjustment, stability-related resource procurement and stability 
validation in day-ahead markets, and stability margin 
assessment of multiple power flow scenarios in long-term 
planning.

Fig. 5.  18-bus test system.

Fig. 6. CCT of critical buses in each area

Fig. 7. Actual and predicted CCT (neural network).

TABLE IX. ACCURACY OF DIFFERENT TESTING OF ARTIFICIAL 
INTELLIGENCE BASED STABILITY ASSESSMENT

Fig. 8. Actual and predicted CCT (random forests).

Fig. 9. Actual and predicted oscillation mode damping (neural network)

Fig. 10. Actual and predicted frequency of oscillation (neural network)

Fig. 11. Actual and predicted frequency nadir (inertia change)

Fig. 12. Actual and predicted frequency nadir (inertia and governor change)

IV. CONCLUSIONS

Artificial intelligence based power grid stability assessment has 
achieved high accuracy on some test systems. Among existing

Stability Estimation accuracy Time for stability assessment 
(86 dispatch scenarios)

Random 
forests

Neural 
network

Time domain 
simulation

Artificial 
intelligence 
based

Frequency 98.30% 99.72% ~16 h ~0.18 ms (with 
trained model)Transient 98.44% 99.29% ~1 h

Small-Signal 98.61% 98.59% ~1 h



studies, transient stability is the most common stability 
assessment problem studied by AI, while very few studies 
focused on small signal and frequency stabilities assessment 
using AI. Among all AI models, neural network in general has 
the highest accuracy on stability prediction. However, most 
existing studies focus on one stability problem and diverge 
largely on input features. In this work, a convenient tool is 
developed to use the same set of input features to assess 
transient stability, small signal stability, and frequency stability 
simultaneously. Test results show that the AI-based stability 
assessment tool can achieve accurate and fast assessment of 
frequency, transient, and small signal stability.
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