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Abstract—The rapid evolution of sensor technologies
and communication networks is tightly coupling the cyber
and physical layers of power systems. Because a few power
grids have fallen victim to cyber intrusions causing unex-
pected device failure and large-scale power outages, en-
hancing power system cybersecurity is the utmost focus of
power grid development today. Financially, the deregulation
of the electricity market opens the gate to profit-oriented
cyberattacks. Real-time market auctions rely heavily on
the accuracy of state estimation, which is susceptible to
cyberattacks. Extensive reviews have been conducted on
modern power system cybersecurity. However, the lack of
a comprehensive and in-depth review of electricity market
cyberattacks prevents independent system operators from
systematically analyzing the financial consequences of cy-
berattacks and limits public awareness of the significant
monetary loss. This article briefly summarizes previous re-
view works and analyzes the two-settlement market design
from a cybersecurity perspective. Then the current achieve-
ments of electricity market cyberattacks are discussed, and
state-of-the-art works are analyzed based on their contribu-
tions. Additionally, a few possible improvements and future
directions are presented.

Index Terms—Day-ahead (DA) market, false data injec-
tion, real-time (RT) market, state estimation, two-settlement
market.

NOMENCLATURE

Sets and Indicis

T Set of time periods.
Nb Set of system buses.
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L Set of transmission lines.

Parameters

SCi,t Start-up cost for unit i at time t.
NLCi,t No-load cost for unit i at time t.
Ci,t Generation cost for unit i at time t.
Di,t Load at a specific bus i at time t.
d Total load.
Fmax

l, Fmin
l Upper and lower transmission capacity for line l.

GSFl-i Generation shift factor matrix.
Pmax

i, Pmin
i Upper and lower generation capacity for unit i.

δ Fluctuation parameter (usually 0.001).
z Raw measurements for state estimation.
h(x) Function describing the relationship between

measurement z and states x.
H Linearized h(x).
R Variance matrix for measurement z.
e Measurement error.
r Residual vector.
S Sensitivity matrix.

Variables

si,t, oni,t Start-up decision and status for unit i at time t.
Pi Generation of unit i.
ΔPi Hypothetical incremental generation of unit i.
ΔDi Dispatch loads.
ν Lagrange multiplier for power balance constraint.
κ+

l, κ-
l Lagrange multipliers for transmission capacity

constraints.
η+i, η -

i Lagrange multipliers for generator capacity con-
straints.

zcom Compromised measurements.
za, Δa Attack vector for measurements and bids.

I. INTRODUCTION

THE GROWTH of the Internet profoundly impacts everyday
life and industrial developments. A global and intercon-

nected communication network introduces both opportunities
and threats to the development of the modern power grid.
With the traditional power industry evolving towards a smart
grid scheme, the complex coupling between cyber and physical
power systems operation challenges the existing cyber protec-
tion measures. A few real-world cases have demonstrated the
current capability of cyberattacks: in 2003, a Slammer worm
disabled the safety monitoring of an Ohio nuclear plant for five
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Fig. 1. Power flow and data flow network.

hours [1]; in 2010, a virus called Stuxnet invaded an Iranian
Supervisory Control & Data Acquisition (SCADA) system to
delay the nuclear program [1]; in 2015 an illegal third-party
entry into a SCADA system in Ukraine caused a large-scale
power outage over three regions [2]. These cases invalidate
the traditional belief that cyberattacks are unable to penetrate
real-world industrial systems.

Beyond the physical damage, some attackers target financial
arbitrage advantages brought by false data injection attacks
(FDIAs) [3]. Under the deregulated power market, electricity
prices are extremely volatile and heavily reliant on real-time
(RT) data gathering. The independent system operator (ISO)
collects bids and offers from various market participants. The
state estimation results construct the RT network model [4].
The locational marginal prices (LMPs) are then calculated to
clear the market. Fig. 1 depicts the power flow and data com-
munication flow for electricity market operations. The remote
terminal units (RTUs) at substations and generators transmit the
raw measurements, such as power flow, power injection, and
bus voltage to the SCADA system. Then the state estimation
calculates the best estimate of the system states. The electric-
ity market-clearing model is formulated using state estimation
results.

Therefore, a profit-oriented FDIA targets the SCADA system
to modify state estimation results and compromise the RT market
LMPs accordingly. In [5], the impacts of FDIAs on the electric-
ity market are first thoroughly analyzed. The authors form a
stealthy FDIA against state estimation and realize the monetary
gain by up-to-congestion transactions (UTCs). Subsequently, a
significant amount of research has been conducted on this topic.

The state-of-the-art works on profit-oriented electricity mar-
ket FDIAs have been categorized in Table I. Research works
[5]–[32] include most of the profit-oriented attack strategies
on the electricity market. Research works [33]–[42] cover the
defense of attack routes related to the electricity market since
there is a lack of direct market-level defense. Nine research
directions have been identified based on their contributions.

Works on power system cybersecurity have been reviewed
extensively: in [1] and [44], the literature on FDIAs is classified
into three topics: the design of FDIAs, the impact of FDIAs,
and defense against FDIAs; literature [43] categorizes current

TABLE I
ELECTRICITY MARKET CYBERATTACK LITERATURE CATEGORY

cybersecurity works based on different attack paths, such as
smart home device or SCADA system; in [45], the prevailing
structures and characteristics of FDIAs and countermeasures
are discussed; literature [46] reviews the role of data streaming
in the smart grid and key techniques for data authentication.

However, review works focusing on the financial impacts of
cyberattacks are not well categorized or clarified. In [3], the
literature on electricity market FDIAs is summarized individu-
ally, but the categorization is broadly divided without analyzing
connections. The focuses of review works [[1], [43]]–[45] are
on FDIAs in general, and only a few studies of market FDIAs
are mentioned.

The contributions of this review article are summarized as
follows.

1) The two-settlement market mechanism is presented from
a cybersecurity perspective.

2) The state-of-the-art works on electricity market cyber-
attacks are summarized and further categorized based on
previous works.

3) The current achievements on this topic are presented,
and a comprehensive review is provided where research
works are divided by their contributions.

4) A number of potential future research directions are
discussed.

The rest of this article is organized as follows. Section II
presents an overview of electricity market models and analyzes
their vulnerabilities. Section III analyzes market cyberattacks
based on where they attack, how they avoid detection, how
they gain profits, and what the impacts are. In Section IV,
research works are categorized and analyzed according to their
research directions. In Section V, countermeasures and defense
strategies are presented. Section VI discusses a few potential
future research directions. Finally, Section VII concludes this
article.
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II. ELECTRICITY MARKET OPERATION

Wholesale electricity markets in the U.S. are organized by
ISOs/RTOs and usually consist of day-ahead (DA) and RT
markets. The offers and bids from generator companies and load
aggregators are collected by ISOs. Unit commitment and DA
economic dispatch are solved to determine DA unit dispatches
and LMPs. DA LMPs are calculated based on 24-h advance load
forecasting. The purpose of the RT market is to offer adjustments
for load forecasting differences between RT and DA. The RT
market is cleared based on RT operation conditions obtained
from state estimation. Therefore, attacking the DA market is less
feasible because ISOs have plenty of time to detect and analyze.
A significant number of profit-oriented attacks perform FDIA on
state estimation to affect RT LMP calculations. The prevailing
market operation models are presented in the following sections.

A. DA Electricity Market Model

The DA dispatch schedule is determined through simulta-
neous optimization of energy and reserves by the least-cost
security-constrained unit commitment (SCUC) and security-
constrained economic dispatch (SCED) [47]. A simplified
SCUC model is shown in (1)–(7):

min
on,start,pi,t

∑
i

∑
t

SCi,tsi,t +NLCi,toni,t + Ci,t(Pi,t) (1)

∑
i

Pi,t − dt = 0∀t ∈ T (2)

Fl
max ≥ Fl ≥ Fl

min∀l ∈ L (3)

Pmin
i,t oni,t ≤ Pi,t∀t ∈ T ∀i ∈ Nb (4)

Pi,t ≤ Pmax
i,t oni,t∀t ∈ T ∀i ∈ Nb (5)

si,t ≤ oni,t ≤ si,t + oni,t−1 ∀t ∈ T∀i ∈ Nb (6)

si,t and oni,t are binary ∀t ∈ T∀i ∈ Nb. (7)

After the unit commitment is fixed, the SCED is formulated
at each period (8)–(12)

min
∑
i

Ci(Pi) (8)

∑
i

Pi − d = 0 (9)

Pmin
i ≤ Pi ≤ Pmax

i ∀i ∈ Nb (10)

Nb∑
i=1

GSFl−i(Pi −Di) ≤ Fl
max ∀l ∈ L (11)

Nb∑
i=1

GSFl−i(Pi −Di) ≥ Fl
min ∀l ∈ L. (12)

Lagrange multipliers are assigned to each constraint to for-
mulate the Lagrange function. The LMP at bus i is defined as
the effect of incremental load on the cost function, as shown in

the following equation:

LMPi = v −
∑

GSFl−iκ
+
l +

∑
GSFl−iκ

−
l. (13)

It is theoretically possible to perform a man-in-the-middle
(MITM) attack to modify bids or offer signals through the
market gateway so that the ISOs clear the market based on
incorrect information. However, cyberattacks on the DA market
are unlikely to happen because of the following reasons.

1) The DA market is cleared a day before RT operation,
during which market participants and ISOs have plenty
of time to detect such anomalies.

2) The DA market-clearing results are based on both the unit
commitment and the economic dispatch, which compli-
cate the computation of attack vectors.

3) The profitability of such attacks is largely impacted by RT
operation conditions. Therefore, attacking the DA market
is less viable.

B. RT Electricity Market Model

The RT market is designed to balance actual demand and
satisfy RT system conditions. The RT market price is unknown
until the operation hour is approaching. Thus, RT LMPs are
extremely volatile.

Two primary approaches to calculate RT LMPs are the ex-
ante method (e.g., NYISO) and the ex-post method (e.g., PJM)
[48]. In the ex-ante model, generation dispatches and LMPs are
calculated based on the forecasted conditions for the next trading
period. The price is settled in a near RT estimate. The ex-ante
model formulation is shown in the following equations:

min
∑
i

CRT
i (Pi) (14)

∑
i

Pi − dRT = 0 (15)

PRT min
i ≤ Pi ≤ PRT max

i ∀i ∈ Nb (16)

Nb∑
i=1

GSFl−i(Pi −DRT
i ) ≤ Fl

max ∀l ∈ L (17)

Nb∑
i=1

GSFl−i(Pi −DRT
i ) ≥ Fl

min ∀l ∈ L. (18)

The ex-post model is purely a price-setting model. Generation
dispatch is determined via the ex-ante model, while the nodal
price is calculated by the ex-post model (19)–(24) [48]. The
ex-post model is an incremental model based on RT system con-
ditions. If the generators and load perform exactly as instructed,
then LMPs from the ex-ante model and LMPs from the ex-post
model converge

min

Nb∑
i

CRT
i (ΔPi)−

Nb∑
i

di(ΔDi) (19)

Nb∑
i

ΔPi =

Nb∑
i

ΔDi (20)
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σPi
RT max ≤ ΔPi ≤ σPi

RT min ∀i ∈ Nb (21)

Nb∑
i=1

GSFl−i(ΔPi −ΔDi) ≤ σFl
RT max ∀l ∈ L (22)

Nb∑
i=1

GSFl−i(ΔPi −ΔDi) ≥ σFl
RT min ∀l ∈ L. (23)

The formulation of RT nodal prices is similar to (13).
In the RT market model, constraints are formulated through

state estimation. For example, the congestion pattern L is decided
by line flow results from state estimation. Raw measurement
data, such as line flow, power injection, and voltage magnitude, is
measured and transmitted through RTUs to control centers. This
remote connection allows an attacker to compromise the data
streaming between RTUs and control centers and manipulate
the state estimation results. Additionally, attackers have more
profitability in an RT market attack. The ex-post model provides
LMPs for the previous period. Thus, when the attack applies,
there is lower uncertainty affecting the profitability of such an
attack. Consequently, a large amount of profit-oriented attack
strategies target at RT market operations.

III. ANALYSIS OF ELECTRICITY MARKET CYBERATTACKS

Different from traditional malicious data intrusions, cyberat-
tacks on the electricity market consider the following.

1) The attackers’ participation in the market-clearing.
2) The profitability of the attack strategies.
3) Bypassing control center detection, such as bad data

identification.
In this section, market cyberattacks are analyzed based on

where they attack, how they avoid detections, how they gain
profits, and what the impacts are.

A. Where to Attack

The construction of RT market model is mainly based on the
result of state estimation and parameters from the market gate-
way. Therefore, two main attack paths are: 1) the measurement
data, which may alter the result of state estimation; and 2) the
market gateway where generators and loads submit bids and
offers.

1) State Estimation: The majority of the market cyberattacks
in the literature are performed on state estimation.

The basic principle of state estimation is presented in the
following equations:

z = h(x) + e (24)

x = (x1, x2, . . . , xn)
T (25)

z = (z1, z2, . . . , zm)T (26)

where x is a system states vector, z is a measurement vector,
and e is the random noise vector. Function h(x) describes the
relationship between the system states and measurements. As
shown in Fig. 2, attackers perform a MITM attack to compromise
data streaming between the control center and local RTUs. In
this way, vector z is modified by the attacker.

Fig. 2. MITM attack between RTU and control center.

The weighted least square method is commonly adopted in
the control center to constructs the ac state estimation problem
[50]. The weighted least square is described in (27), where W is
the weight matrix for measurements. When z is manipulated by
an attacker, x is affected accordingly

min J(x) =
1
2
(z − h(x))TW (z − h(x)). (27)

Few research works on market cyberattack apply the ac
state estimation model. Most works utilize the approximated
dc model, e.g., [5]–[31]. The dc model simplifies (24) as (28).
The estimated states and measurements are calculated as (29),
(30)

z = Hx+ e (28)

x̃ = (HTR−1H)−1HTR−1z (29)

z̃ = H(HTR−1H)−1HTR−1z. (30)

When the attack vector (31) is added, the estimated state and
state estimation results change as in (32) and (33)

zcom = z + za (31)

x̃ = (H ′R−1H)−1H ′R−1zcom (32)

z̃ = H(H ′R−1H)−1H ′R−1zcom. (33)

By manipulating the estimated line flow, the congestion pat-
tern is compromised. The Lagrange multiplier associated with
the compromised line is changed to 0 or from 0 to a positive
number, and thus LMPs are modified. The new set of Lagrange
multipliers are obtained by resolving the Karush–Kuhn–Tucker
(KKT) conditions.

However, it is inaccurate to claim that LMPs are manipulated
by such attacks. Manipulation of the line congestion pattern
is not the same as the manipulation of LMPs. First, attackers
are unable to calculate the new Lagrange multipliers. Second,
attackers can only create price differences but are unable to
change LMPs to a specified value.

A potential method for manipulating LMPs is to compromise
the bids and offers through the market gateway.

2) Market Participant Interface: The relationship between
the bidding information and LMPs can be inferred by
formulating the stationary (34) in market model KKT conditions

∂Ci(pi)

∂Pi
− v +

L∑
l=1

GSFl−i(κ
+
l − κ−

l) + η+i − η−i = 0.

(34)
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Then, (34) is reformed to (35) by separating the bid term
�Ci(pi)/�Pi with the Lagrange multipliers

∂Ci(pi)

∂Pi
=v −

NL∑
l=1

κ+
iGSFl−i+

NL∑
l=1

κ−
iGSFl−i − η+i+ η−i.

(35)
Therefore, the relation between bid information and LMPs is

developed in the following equations:

∂Ci(pi)

∂Pi
= LMPi − η+i + η−i. (36)

Attackers manipulate bid information when the RT market
gateway is compromised, as in (37). It worth noting that the
results of such an attack depend on the marginal unit patterns

∂Ci(pi)

∂Pi
+Δa = LMPnew

i − ηnew+
i + ηnew−

i. (37)

Scenario 1: when the marginal unit’s bids are modified,
and the attack vector is small enough to maintain the original
marginal unit patterns, LMPs are manipulated by such an attack
as follows:

η+i = 0, η−i = 0 (38)

∂Ci(pi)

∂Pi
+Δa = LMPnew

i = LMPi +Δa. (39)

Scenario 2: when marginal units stay the same, and the non-
marginal unit is attacked, this attack is inactive until an amount
of Δa large enough to alter the marginal unit pattern, as in the
following equations:

∂Ci(pi)

∂Pi
+Δa = LMPi − ηnew+

k +Δa ≤ LMPi (40)

∂Ci(pi)

∂Pi
+Δa = LMPi + ηnew−

k −Δa = LMPi. (41)

Scenario 3: the modified bids turn a marginal unit to a non-
marginal unit or a nonmarginal unit to a marginal unit. The bid
of the new marginal unit will contribute to the LMPs, as in the
following equation:

LMPi =
∑

j∈MGnew

LMPj
∂Pj

∂Di
. (42)

Therefore, the identification of marginal units is crucial to
perform such an attack. Most attackers may not have enough
information to estimate which unit is the marginal unit. An
efficient algorithm for marginal unit estimation combined with
this cyberattack may cause significant financial loss.

There are other unconventional attack paths in the market
operation: such as communication at the demand side [25] and
line rating information manipulation [27]. Further explanations
of those attacks are included in Section IV-E.

B. Where to Gain Profit

To gain profit from the electricity market, the attackers have
to participate in the market operation. However, owning a gener-
ation resource or cooperating with the generator company may
reveal attackers’ identity to control centers.

Therefore, a virtual bidding transaction best fits the attackers’
needs. Virtual bidding is an arbitrage from the DA market to the
RT market to increase liquidity in market operations. Normally,
three types of virtual bidding are offered in the U.S.: increment
offers (INCs), decrement bids (DECs), and UTCs [49]. In an
INC, the bidder sells a certain amount of power at a node in
the DA market and buys it back at the RT market. This trade is
profitable when the DA LMP exceeds the RT LMP

Pay = (LMPDA − LMPRT )P. (43)

DECs are performed in the opposite way to INCs

Pay = (LMPRT − LMPDA)P. (44)

UTCs are performed to gain profit via the congestion and loss
difference between the RT market and the DA market

Pay =
[
(LMPA

DA−LMPB
DA)

−(LMPA
RT − LMPB

RT )
]
P. (45)

Furthermore, (45) is reformulated as follows:

NL∑
l=1

(κ+
l − κ−

l)(GSFl−A −GSFl−B)

+ (LMPA
DA − LMPB

DA)P. (46)

Virtual bidding is a purely financial transaction that requires
no physical power delivery or consumption. Thus, virtual bid-
ding is the preferred way for an attacker to gain profit. As stated
in Section III-A, LMPs are not fully manipulatable, but the
created price difference can guarantee attackers’ profit if the
following conditions are satisfied [5].

1) Careful selection of bus A and B in the DA market (47)

(LMPA
DA − LMPB

DA) ≥ 0. (47)

2) For lines that GSFl−A > GSFl−B , those lines are modi-
fied to non-negative congested lines

NL∑
l=1

(κ+
l − κ−

l) ≥ 0. (48)

3) For lines that GSFl−A < GSFl−B , those lines are modi-
fied to nonpositive congested lines

NL∑
l=1

(κ+
l − κ−

l) ≤ 0. (49)

Depending on the attack model, different virtual transactions
could be selected. For example, literature [14] and [27] consider
DECs at a pre-selected bus. In [5] and [26], the UTC is applied
to gain profit.

C. How to Avoid Detection

The market operator typically collects data from two sources:
state estimation and market gateway. Research works on market
FDIAs have been focusing on avoiding the state estimation level
detections. Measurements transmitted from RTUs are imperfect
due to the finite accuracy of meters or communication systems.
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With sufficient redundancy of measurements, a typical module
of bad data detection is expected to filter out the errors. There-
fore, the injection of false data could be identified by the bad data
detection module. Most research works on market cyberattacks
consider bypassing bad data detection. The largest normalized
residual test is a prevailing model for bad data detection to find
the anomalies in a measurement set. The difference between
estimated measurement data and raw measurement data is cal-
culated in (50). Then, (51) describes the relationship between
residuals and errors. The obtained residuals are normalized by
(52) and (53). If the calculated riN exceeds a certain threshold
(54), the measurement i is identified as bad data

r = z − z̃ (50)

r = (I −H(HTR−1H)−1HTR−1)(h(x) + e) (51)

S = I −H(HTR−1H)−1HTR−1 (52)

ri
N =

ri√
SiiRui

(53)

∥∥riN
∥∥

2 > threshold ∀i ∈ M. (54)

To avoid the detection, the additional residual induced by
FDIAs, as in (55), needs to be controlled. Thus, if the result-
ing res is less than a threshold, the attack is assumed to be
undetectable

res = (I −Hact(H
′
actR

−1Hact)
−1H ′

actR
−1)za. (55)

D. Impact of Profit-Oriented FDIAs on Market Operations

The profit-oriented FDIAs on the electricity market aims to
bring financial arbitrages to some market participants. However,
such FDIAs are also detrimental to the overall market opera-
tion, regardless of the profit-oriented objective. In [5]–[17], the
congestion price is modified by manipulating the congestion
patterns. Thus, the compromised congestion price between cer-
tain nodes creates profits for targeted market players. However,
the change in congestion prices inevitably changes the LMPs at
other nodes. Some of the normal market players may suffer from
a significant loss, and some of the normal market players may
receive a “free-ride” profit due to the FDIA. In either way, the
social-welfare suffers from an inevitable loss because the FDIA
deviates the financial settlement from the original equilibrium.
Further, in [18]–[20] and [27], the topological information is ma-
nipulated by the attacker to create price deviations. Although the
physical topology or line rating is unchanged, the compromised
information induces erroneous generation dispatches, which
may cause transmission line physical overload and outage. In
[22]–[24], the load side management is compromised to ma-
nipulate LMPs. An erroneous load forecast or demand response
induces excessive ancillary services, which not only diminishes
social-welfare but also delivers incorrect signals for contingency
analysis. In general, any fake parameters in the RT dispatch
model may lead to social welfare loss and erroneous dispatches.
Further, in the long-term, consecutively compromised LMPs
deliver false signals to grid planning and investment decisions.

Market operation is a crucial part of supporting an economical
and reliable grid operation. Although the intended impact of
profit-oriented FDIAs is only to create profits for the targeted
market players, the influence on market settlements leads to
a chain reaction in the system. Therefore, the impact of such
FDIAs is not limited to the profitability of certain market players.
Profit-oriented FDIAs induce catastrophic consequences in grid
operations, both financially and physically.

IV. CATEGORIZING THE LITERATURE

BY RESEARCH DIRECTIONS

In this section, the current FDIA efforts are reviewed in detail
based on their contributions. Many works have investigated the
impact of cyberattacks on the electricity market. State-of-the-art
works on market FDIAs are summarized and analyzed in this
section. Major research directions are identified and are shown
in Fig. 3.

A. Attacker and Defender Interaction

The attacker’s goal is to compromise market prices while the
control center tries to identify and mitigate the attacks. Thus, the
interaction between an attacker and a control center (defender)
is intrinsically a zero-sum game. Esmalifalak et al. [6] model the
Nash equilibrium of the attacker and defender, where the attacker
and defender compete to increase/decrease the power flow from
state estimation. Attackers and defenders are assumed to have a
mixed strategy where the players randomly select moves. The
possible outcome of this game is decided via (56) where a
represent the outcome, and y and w are the action indicators
selected by the attacker and defender

J(y, w) =
∑
i=1

∑
j=1

yiaijwj = y′Aw. (56)

The defender tries to minimize J(y,w), as in (57), while the
attacker prefers to maximize J(y,w), as in (58), and they both do
not influence the other party’s selections

Vdf = min
Y

max
w

J(y, w) (57)

Vatt = max
w

min
Y

J(y, w). (58)

Then the equilibrium point of the attacker and defender is
found in the following equation:

Vdf = Vatt. (59)

Instead of assuming that the attacker and defender act simul-
taneously, in [7], dynamic interaction is further modeled through
multiact dynamic game theory. In [8] and [9], the attacker and
defender are competing for measurements in PMU and sub-
stations, which causes loss of loads and misleads the economic
dispatch eventually. The zero-sum game in the above-mentioned
literature models the interaction of a single attacker and a single
control center well. A more realistic setting could be provided by
further modeling multiple attacker players and multiple defender
players.
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Fig. 3. Schematic picture of cyberattack research directions in electricity markets.

B. Imperfect Topology Information

As shown in (55), if the system topology matrix H is known,
the extra residual induced by FDIAs can be reduced to zero by
a careful selection of the attack vector. However, the system
topology is extensive and volatile, and the attacker is unable to
have the full topology information. Under this scenario, attacks
are more likely to be detected by bad data detection.

Some research works launch profitable attacks without full
grid information. In [10] and [11], the attacker is assumed to
have partial access to topology information. To ensure profitabil-
ity under the topology information uncertainty, research work
[10] proposes a robust FDIA to guarantee worst-case profits.
Research work [11] further models FDIAs through stochastic
programming, where (55) is modified to a chance constraint as
in (60), which means the possibility of passing bad data detection
is larger than a confidence level η. The overall attack procedure is
similar to attack strategies that have full information, but solving
the chance constraint requires model reformulation and more
computations.

P
(∥∥∥(I −H(H ′R−1H)

−1
H ′R−1)zcom

∥∥∥
2
< thresh

)
≥ η.

(60)
In [12], the attack vector is constructed without inferring H.

The subspace of H is tracked by the measurement data, and
thus, as long as the attack vector lies in the subspace of H, (55)
is always satisfied.

The above-mentioned works focus on utilizing mathematic
techniques to infer grid information or construct the attack vector
by analyzing the relation between the state estimation and attack
vectors. Kekatos et al. [13] provides a new path in which the
topology matrix is inferred by observing successive RT LMPs.

C. Congestion Pattern Attack

Congestion pattern modification is the most commonly re-
ferred attack strategy in market cyberattacks. The true status of
line flow fl is at its maximum (61) while the attacker injects false

data to relieve the congestion

fl = fl
max ∀l ∈ Ltaget. (61)

The after-attack line flow becomes (62), which is usually used
as a constraint in the attack model

fl − (H ′R−1H)−1H ′R−1za < fl
max ∀l ∈ L−max. (62)

The modification of the congestion pattern changes the dual
variables associated with line flow constraints, which modify
the LMP.

In [14], both the financial gains and the possible blackout
caused by modifying congestion patterns are discussed. In [15],
an attacker adds or removes a transmission line from a con-
tingency list to affect SCED. In [16], bogus trading in the DA
market is combined with congestion pattern modifications to
generate profit. Research work [17] presents an attack strategy
which not only avoids bad data detection but also maximizes
profits. It should be noted that relieving a congested line is much
easier than congesting an uncongested line in terms of finding a
valid attack vector. For example, a line is congested at its upper
limit 200 MW, and the attack vector only needs to make a slight
change to de-congest the line (e.g., reducing the line flow by 1
MW). As such, the attack vector leads to a very small change to
the value of res in (55) and still causes a change in the congestion
pattern, which eventually changes the value of LMPs.

D. Topology Attack

Similar to congestion pattern attacks, the topology attack
modifies the digital information of break or switch status sent to
topology processors. Thus, the optimal power flow calculation is
significantly altered. Different from congestion pattern attacks,
which normally relieve line congestions, topology attacks can
add or switch off lines. From a market-clearing perspective,
congestion pattern attacks take away particular line limits, but
topology attacks change the generation shift factors. Therefore,
the topology error can cause more damage than the congestion
pattern attack. Current topology attack strategies focus on dam-
aging market operations and social welfare. Profitable topology
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attack strategies considering the altered dispatch are an area
for future research. The topology attack literature is reviewed
as follows to provide insights for further developments. The
economic impact of adding, removing, and switching a line in
a topology processor is provided in [18]. In [19], topology at-
tacks and general FDIAs are combined to disturb the Australian
electricity market LMP calculation, and the huge financial loss
caused by such an attack is demonstrated. Further, research work
[20] investigates the necessary information set under which the
topology attack is undetectable.

E. New Attack Paths

Other than traditional attack strategies that focus on state
estimations, market attackers have shown other attack paths to
gain illegal profit.

In [21], an MITM attack is performed to modify the bid in-
formation of load aggregators and generator companies. A load
redispatch (LR) attack compromises only load measurement and
line flow measurement to affect power generation, as proposed
in [22]. Research work [23] further applies the LR attack to
produce desired congestion patterns, and thus the RT LMPs
are controlled. Most existing RT market cyberattack works
perform an attack on the ex-post market while research work [24]
formulates an attack strategy performing on the very-short-term
load forecasting. Thus, the ex-ante unit dispatch schedule is mis-
guided, and the actual power generation is significantly affected,
which gives the corrupted generator owner benefits. Instead of
focusing on compromising data streaming between a control
center and RTUs, research work [25] investigates the possibility
of attacking communication between responsive demand and
aggregators to disturb RT LMPs. In [26], the inter-temporal
generator ramping constraint is compromised to withhold gen-
erator capacity. In this scenario, look-ahead dispatch is applied
instead of the static SCED. The extra dual variables associated
with the ramping constraint inevitably influence the LMPs, and
thus modifying the ramping limit achieves a similar effect when
modifying the congestion pattern. In [27], the transmission line
ratings, namely the lower/upper bounder of line flow constraints,
are compromised to ensure the profit of some market players.

F. Sensitivity Analysis

Performing cyberattacks or defending cyberattacks on the
electricity market is a complicated task. An attacker prefers
to inject as small of an amount of bad data as possible or
compromise as few sensors as possible but generate a monetary
gain as large as possible. Similarly, a defender wishes to protect
sensors and mitigate attacks with the least amount of effort. To
balance this tradeoff, sensitive analysis is paramount to potential
attackers and defenders. In [28], the sensitivity between the price
signal to responsive load and the power imbalance is developed.
Research work [29] derives the mathematical representation
between the congestion cost and topology errors, and thus the
topology errors’ impact on LMPs is formulated. In [30], both
the error in system state and topology impact on LMPs are
analyzed. It is shown that RT LMPs experience more variation
if a topology error is combined with bad meter data. Further,

in [31], the insensitivity between the attack vectors in critical
measurements and system states is demonstrated, which leads
to a long-term impact on LMPs. In [32], an opportunity for
attackers to withhold distributed generator generation to gain
profit is discussed, and the impact sensitivity of curtailment and
profit is analyzed.

V. ELECTRICITY MARKET ATTACK DEFENSE ALGORITHM

There is a lack of literature on market-level cyberattack
detection mechanisms, such as how to detect cyber intrusions
based on abnormal LMPs. The attack paths of market cyber
intrusion normally lay in state estimation, as stated in Section III.
Therefore, by enhancing state estimation, cyberattacks on the
electricity market are less likely to happen. Some representative
defense strategies that may contribute to the future development
of market-level attack defense are summarized as follows.

A. Securing Preselected Sensors

As stated in [1], if the insecure sensor number K is larger than
the difference between measurement number M plus one and
bus number N, an undetectable FDIA is always feasible

K ≥ M −N + 1. (63)

Thus, if the defender can have at least M-N+1 sensor im-
mune to attackers, the attack can no longer bypass the bad data
detection [33]. Further, the protection of a sensor is assumed to
have a defense budget. Based on this observation, a least-budget
defense strategy is proposed in [34] to protect the system while
spending the least on defense. Similarly, in [35], a graphical
method is applied to identify a minimum number of measure-
ments, and which is assumed secure so that none of the system
states can be compromised.

Other than physically securing the basic measurement unit, re-
placing basic measurement units with phasor measurement units
(PMUs) enhances data collection security. PMUs synchronize
global time information with buses distributed over the system,
which reduces the risk of being attacked. In [36], a greedy
algorithm is proposed to place PMUs in a system efficiently,
and if more than 1/3 of buses are equipped with a PMU, any
attack vector largely increases the bad data detection residual.

B. Improving State Estimation Algorithms

Different from securing sensor measurements, works [37]–
[39] develop algorithms facilitating bad data detection. Random
noise in the raw measurements has consistent statistical distribu-
tions, but the maliciously added attack vector does not follow the
distribution. Therefore, there is a possibility of differentiating
the attack vector from the random noise via pretuned statistic
algorithms. Based on this observation, Huang et al. [37] provide
an adaptive cumulative sum method to determine the change
of statistic properties. Similarly, in [38], a Kullback-Leibler
distance is applied to calculate the similarity between two dis-
tributions. The measurement variations are obtained first, and
then the historical error probability distribution is compared
with probability distribution in RT operation to detect the FDIA.
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Further, research work [39] observes that temporal system mea-
surement typically has a low dimension structure, and the attack
vector is normally sparse. Thus, a matrix separation method is
proposed to detect the FDIA. In [40], a new detector is proposed
to replace the classic largest normalized residue test based on
the minimum mean square error to detect FDIAs.

C. Other Defense Algorithms

There are other defense methods against market cyberattacks,
apart from enhancing state estimation. In [41], the reactance
information of a preselected transmission line set is hidden
from attackers, which significantly increase bad data detection
possibilities. Based on this observation, an optimal line selection
problem is formulated. Solving the problem gives the minimum
line information to be hidden. In [42], the vulnerability of state
estimation is improved from a communication security point of
view, such as enhancing routing and data authentication.

VI. FUTURE DIRECTIONS

Based on the above-mentioned analysis and review of cur-
rent research on electricity market cyberattacks, the following
research directions are believed to be worth investigating.

A. Defense Strategies on the Market-Level, Such as
Detecting Attacks Via Abnormal LMPs

Most of the research works have been developing defense
strategies on state estimation. However, there is a lack of inves-
tigation in defense strategies based on market-level behaviors.
The FDIA could induce inconsistency between modified LMPs,
congestion patterns, system loading levels, generation cost, etc.
As in [51], an attack model only bypassing bad data detection
could induce abnormal step changes in LMPs, which is an easy-
to-detect signal for ISOs. More market-level defense strategies
could be further developed to provide direct protection against
market cyberattacks.

B. Vulnerability Analysis of the Market-Clearing Process
in Terms of Profit-Oriented Cyberattacks

Although the market cyberattacks could come from various
attack paths, the eventual targets are already known, which
are the parameters of the market-clearing model. Therefore, a
vulnerability analysis for the market-clearing process could eval-
uate the possibility of each parameter being attacked. Existing
research works have been elaborating on a specific attack path.
There is a lack of comprehensive analysis on which attack path
produces the most profits (i.e., the most vulnerable attack path).

C. Modeling of Interactions between Multiple Attackers
and Single/Multiple Defenders

Current research works only model the interactivity between
a single defender and a single attacker. In reality, multiple
entities could be preparing to gain illegal profits or protecting
the system. Thus, a two-party zero-sum game fails to represent
this complicated scenario. Attackers may also be cooperative
or noncooperative with each other, but defenders are always

cooperative with each other. However, equilibrium in this mul-
tiattacker setting is computationally hard. A tentative way is to
separate the multiplayer game into multiple subgames because
different attackers may target LMPs at different buses, which
could make the game separable. Further, the interaction model
becomes more realistic if the impact of unexpected contingency
events is incorporated.

D. Profitability and Feasibility of the Proposed FDIA
Strategies Under AC State Estimations

Most of the electricity market cybersecurity literature con-
sider bypassing bad data detection in dc state estimation. How-
ever, the real system runs under ac state estimation. Research
work [50] demonstrates that the residuals of FDIAs targeting the
dc model increases quadratically with attack magnitude when
applied in the ac model. A possible successful market attack in
ac state estimation manipulates congestion, which only needs a
small deviation to relieve congested lines. For example, a line at
its limit of 200 MW is relieved to 199 MW. Thus, conceptually
a reasonable FDIA for congestion manipulation always exists to
pass bad data detection in ac state estimation if we keep reducing
the modification amount. Therefore, a further investigation is the
profitability jurisdiction if the attacks only relieve congestion.
Further, it is more difficult to implement an FDIA in a large
system because of high redundancy and complicate topology.
Market FDIAs on large-scale test cases with full ac state esti-
mation can be investigated for both profitability and feasibility.

E. Possibility and Profitability of Compromising
Communication at Distribution-Levels

Most research works on cyberattacks at the distribution-level
focus on sabotaging microgrid operations or renewable genera-
tion controls. Profitable attacks at distribution-levels are still un-
der investigation. Similar to the wholesale market, distribution-
level attacks also bring significant monetary gains. For exam-
ple, distribution-level economic dispatch and distribution-level
LMPs have been proposed to encourage distributed generations
(DGs) [53]. Financial arbitrages could be given to particular
DGs by compromising the communication between distribu-
tion system operators (DSOs) and DGs. It is worth noting
that congestion rarely occurs at the distribution-level, and thus
congestion manipulation may not be preferable. Some possible
attack paths could be reactive power limits, dispatch signals
from DSOs to distribution aggregators, and demand response
programs.

VII. CONCLUSION

The evolving communication techniques strongly couple the
cyber and physical electricity market operations. The cyberse-
curity of market operations is an indispensable part of smart grid
developments.

This article provided a comprehensive and in-depth review
and analysis of, and insights on profit-oriented electricity market
cyberattacks. First, electricity market models were reviewed and
the vulnerability was analyzed from a cybersecurity perspective.
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Second, current works of literature on where attacks occur,
how attacks avoid detection, how attackers gain profit, and
the impacted of attacks in market operation were analyzed.
Then the literature was summarized and categorized by research
directions. Finally, a few potential future directions were also
discussed.
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