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Abstract— To reduce the common-mode voltage (CMV) in the 
PWM-based motor drive system, many CMV reduction methods 
have been proposed. However, the performance of such methods 
has limitations such as only being implemented on particular 
operating conditions with fixed switching frequency or PWM 
patterns and relying on the simulation or experimental data. This 
paper explores machine-learning-based methods to actively 
evaluate the CM performance. Machine learning methods are 
employed to actively analyze three popular PWMs (SVPWM, 
AZSPWM, and DPWMMin) on-chip. In this way, we can online 
determine the best PWM pattern and switching frequency with a 
minimum requirement of computation resources based on the 
torque and speed command. 

Keywords—CMV reduction, motor drive system, machine 
learning 

I. INTRODUCTION

A three-phase voltage source inverter (VSI), as shown in Fig. 
1, is commonly used in AC motor drive systems [1]. As a result 
of common-mode voltage (CMV), the common-mode current 
(CMI) flows through the motor case to the capacitor middle
point. This will cause insulation failure, greatly reducing the
motor lifespan, and cause significant EMI problems. To reduce
the CMV, and ultimately reduce the CMI, some PWM methods
have been proposed, such as active zero state PWM (AZSPWM)
and discontinuous PWM clamped to the negative DC bus
(DPWMMin). As shown in Fig. 2 , the common idea for these
PWMs is to reduce or avoid the usage of zero-state vectors.
Compared with space vector PWM (SVPWM), the peak value
of the CMV has been shaved by AZSPWM and DPWMMin.

To quantify the actual CMI reduction performance, 
traditional approaches count on simulation and experiments to 
collect the data at specific operating points, which lacks 
analytical models and tools. Reference [2] proposed a double-
Fourier integral (DFI) based analytical model to characterize the 
CM performance of various PWMs. However, such a DFI model 
is significantly time-consuming, taking tens of minutes to finish 
the computation on the ARM Cortex-A9 processor on Xilinx 
Zynq-7000 Zedboard. This makes it infeasible to do an online 
calculation of CMI. Although using a lookup table (LUT) is a 
good alternative, it may require a lot of memory space, 
especially the table could be multi-dimensional. Another 
method is to use a machine learning (ML) algorithm to learn the 
mapping between the input parameters and the target. In this 
case, only the trained model parameters need to be stored in the 
memory. The required memory space depends on the 
complexity of the model (number of parameters) rather than the 
data itself and the acceptance of runtime can also be guaranteed, 
which makes the online estimation of the CMI possible, thereby 
selecting PWM patterns based on CMI is also possible. 

Fig. 1 Three-phase two-level VSI motor drive system 
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II. LOOKUP TABLE VS MACHINE LEARNING FOR MAXIMUM 

CMI ESTIMATION 

A. Lookup-table-based Method 

A lookup table estimates the new data that is not covered in 
the table by using some interpolation methods. For a 3-D lookup 
table, the bilinear interpolation [3] is the simplest and easiest one 
to be implemented in the embedded systems/microprocessors. 
Assume there are 4 data (��, ��, ���) , (��, ��, ���) , (��, ��, ���) 
and (�

�
, ��, ���)  in the lookup table where �  is the inverter 

switching frequency, �  is the modulation index and �  is the 
peak CMI (�� < ��, �� < ��). Any data on the surface formed 
by these four data points can be estimated using bilinear 
interpolation. Assume the unknown data is (�, �, �)  where � 
and �  are given. The estimated peak CMI at (�, �)  can be 
obtained by the following equation. 

� = ����
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B. Machine-learning-based Method 

Estimating the maximum CMI is a regression problem. 
Various ML algorithms aiming to solve such problems have 
already been proposed and applied. Linear regression is the 
simplest regression algorithm where each feature has a linear 
relationship with the target, as shown in the following equation. 

   �(�) = ��� + �  

   � =
�

�
∑ (�(��) − ��)��

���   

where �, � and � are vectors, and the loss function is used to 
update the set (�, �) that gives the minimum error given the 
dataset � = {(��, ��), (��, ��), … , (��, ��)}, �� ∈ ��, �� ∈ �� . 

There are other improved regression models such as Ridge 
Regression and Lasso Regression which aim to address the 
overfitting issue and learn a sparse model. However, these are 
all linear regression models which can guarantee good 
prediction performance in problems where the features have 
high linearity with the target. For the non-linear regression 
problems, without any feature engineering, those linear models 
are not good candidates. Thus, other models need to be raised to 

solve non-linear regression problems. Neural networks (NN) 
consist of series of hidden layers containing multiple neurons. 
Each neuron processes equation (2) and passes the result to a 
non-linear activation function. Because of activation functions 
in the neural networks (NN), such models yield better 
performance and are able to learn any functions in theory [4]. 

III. MAXIMUM COMMON MODE CURRENT ESTIMATION – 

DATASET AND MODEL STRUCTURE 

A. Dataset Collection 

As mentioned in Section I and Section II, the DFI takes a 
long time to execute on the ARM processor, making it 
impossible to online estimate the CMI. Here either lookup table 
or NN can replace DFI and directly obtain the maximum CMI at 
any operating point. Such maximum CMI then can be compared 
with vehicle standards such as CISPR 25 to online examine if 
any EMI requirement has been violated.  

To form the lookup table or train the NN, the dataset needs 
to be collected. In this paper, we assume the motor inverter has 
no CM choke. The DC bus voltage and fundamental frequency 
are constant which are 400 V and 100 Hz, respectively. In LUT, 
the inputs are modulation index (MI) and switching frequency 
(fs), and the output is the estimated peak CMI. In NN, 
modulation index and switching frequency are the features and 
the peak CMI is the target. Both training dataset and test dataset 
are collected. The training dataset is used to form a lookup table 
or train a neural network model and the test dataset is used to 
validate models.  

The modulation index in the training dataset varies from 0.1 
to 0.9 with a step size of 0.05, while the switching frequency is 
from 10 kHz to 40 kHz with a step size of 250 Hz. The test 
dataset is collected with less data where the modulation index is 
from 0.13 to 0.87 with the step size of 0.1, and the switching 
frequency is from 14 kHz to 38 kHz with the step size of 5 kHz. 
Three PWMs are used, therefore the peak CMI values under 
each PWM are collected for the training dataset and test dataset. 
In summary, there are 2057 samples in total in the training 
dataset and 40 samples in the test dataset, where each sample 
contains fs, MI, and three peak CMI values for SVM, AZPWM, 
and DPWMMin. Fig. 3 shows the distribution of the data in the 
training dataset and test dataset in 2D point of view (fs and MI). 
The surface plot of the training dataset is shown in Fig. 5. 

 
Fig. 2 Various pulse patterns and corresponding CMV distribution (left) SVPWM (middle) AZSPWM (right) DPWMMin 
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According to these figures, it obviously reveals the non-linearity 
between the features (MI, fs) and the target (peak CMI). 

B. Model Structure 

To implement and test the LUT model, the whole training 
dataset is stored in the memory and the test dataset is used for 
evaluation only. The LUT model structure is so simple that it 
will not be covered here. To implement and test the NN model, 
the training dataset is used to train a model in a PC and only the 
trained parameters (weights and biases) are stored in the 
memory. The structure of the NN model is shown in Table 1 and 
Fig. 4. 

Table 1 Parameters of the neural network 

Layers 
# of 

neurons 
# of 

weights 
# of 

biases 
Activation 
function 

Input Layer 2    

Hidden 
Layer 1 

4 8 4 Tahn 

Hidden 
Layer 2 

8 32 8 Relu 

Hidden 
Layer 3 

16 128 16 Relu 

Output 
Layer 

1 16 1 Liner 

 

IV. IMPLEMENTATION AND EVALUATION 

In the training process of the NN, the training dataset is split 
into the training set and validation set based on the ratio of 4:1. 
The training process will stop when the validation performance 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Surface plot of peak CMI with different fs and MI for: (a) SVM (b) 
AZSPWM (c) DPWMMin. 

 
Fig. 3 Data distribution in 2D point of view (blue points are training 

data; red points are test data). 

 
Fig. 4 Structure of the proposed neural network (�: switching frequency; 

�: modulation index; �: peak CMI). 
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has increased more than the maximum failure times, which is 10 
in our training algorithm. Levenberg-Marquardt 
backpropagation is used as the training function. The pseudo-
code of the implementation of the lookup table and NN are given 
in algorithm 1 and algorithm 2, respectively, as shown below. 

Algorithm 1 Implementation of the lookup table. 

Require: �, the lookup table. �, switching frequency. �, 

modulation index. 

1:    obtain � and � 

2:    if the pair (�, �) exists in � then 

3:        retrieve the � from � 

4:    else 

5:        find �� and �� that is closest to � (�� < � ≤ �� �� �� ≤ � <

��) 

6:        find �� and �� that is closest to � (�� < � ≤

�� �� �� ≤ � < ��) 

7:        retrieve the data from �: (��, ��, ���), (��, ��, ���), 

(��, ��, ���) and (��, ��, ���) 

8:        use bilinear interpolation (3) to calculate � 

9:    end if 

 

Algorithm 2 Implementation of neural network. 

Require: �, trained weights.    �, trained biases. �, switching 

frequency. �, modulation index. ��, # of layers. 

1:    obtain � and � 

2:    normalization: (�, �) → (�����, �����) 

3:    �� = [�����, �����]� 

4:    for � = 0, … , �� − 1 do 

5:        x��� = activate�ω�
�x� + b� 

6:    end if 

7:    I = x��
 

 

The prediction performance of LUT and NN is evaluated 
using the test dataset (containing 40 samples), and the results are 
shown in Fig. 6. A dot symbol "⋅" denotes a real peak CMI value. 
A plus symbol "+" denotes an estimated peak CMI value using 
the lookup table. A circle symbol "∘" denotes an estimated peak 
CMI value using NN. Fig. 7 plots the prediction errors and mean 
errors of LUT and NN models evaluated on the test dataset. 
Absolute errors are used here. Table 2 shows the summary of the 
models and time/space expense using ARM Cortex-A9 
processor on Xilinx Zynq-7000 Zedboard. The program runtime 
is measured using a global timer on the board and the occupied 
space is calculated based on the data type and number of the data 
stored in the memory. 

Based on the results, the lookup table has shorter runtime (at 
microsecond level), but it requires much larger space to store 
data compared with NN. In other words, the NN sacrifices time 
to save space, which has millisecond-level runtime but just 
needs 30 times less memory. The difference in runtime between 
the LUT model and the NN model is reasonable. Lookup is 
quick! And NN model involves some matrix computations 
which slow down the algorithm execution time. 

The prediction results of LUTs on SVM and AZSPWM are 
slightly better than NNs while on DPWMMin, NN models are 
better than LUTs. Some prediction errors could reach as high as 
20% but in most test cases, the errors are distributed under 15%. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 Evaluation of the lookup table and neural network for: (a) SVM, 
(b) AZSPWM, (c) DPWMMin. 
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In the data collected, the common-mode currents, at the 
milliampere level, are very small. Such errors will not affect the 
results a lot. It should be also addressed that the neural network 
can further be modified and improved to get better prediction 
performance. In real applications in EV, the runtime of the 
neural network has already been acceptable for the on-chip real-
time operation. Note that this computation process can also be 
speeded up by using some hardware acceleration techniques or 
choosing other microprocessors with higher performance.  

Table 2 Summary of models and time/space expense 

Model 
Runtime 

(ms) 
Data 

Stored 
Occupied 

Space (KB) 
Prediction 
Error MSE 

SVM LUT 0.00061725 
6171 

float32 
24.684 1.0211e-06 

SVM NN 0.17469 
213 

float32 
0.852 2.2513e-06 

AZSPWM 
LUT 

0.0006393 
6171 

float32 
24.684 1.5002e-07 

AZSPWM 
NN 

0.17407 
213 

float32 
0.852 2.2194e-07 

DPWMMin 
LUT 

0.00063765 
6171 

float32 
24.684 5.2204e-07 

DPWMMin 
NN 

0.17461 
213 

float32 
0.852 3.3076e-07 

 
Online estimation of peak CMI has various potential 

applications. Once the model is deployed in the embedded 
system, we can then online decide the best switching frequency 
and PWM to comply with the CMI standard and process other 
optimization based on CMI. 

V. EXPERIMENT RESULTS 

LUT and NN models for three PWM patterns are built, 
trained, and evaluated. In this section, all the models are 

deployed in the ARM Cortex-A9 processor and verified through 
experiments. 

Fig. 8 shows the test benchmark. The motor drive system 
consists of a SiC inverter, a two-pole three-phase PMSM, a 
Xilinx Zynq-7000 Zedboard (ARM + FPGA), and a load. Three 
different PWM patterns mentioned in this paper are generated 
by the Zedboard to drive the motor. The EMI receiver is used to 
measure the CMI and generate the spectrum. In this paper, we 
only focus on the spectrum from 150 kHz to 300 kHz, and the 
predicted peak CMI is also within this region. 

Fig. 9 shows the measurement results at switching 
frequency: 10 kHz and modulation index: 0.31. Within the 
frequency range from 150 kHz to 300 kHz, the maximum 
common mode currents are labeled in the figures. The maximum 

 
Fig. 8 Experiment test benchmark. 

  
(a) (b) (c) 

  
(d) (e) (f) 

Fig. 7 Model evaluation error plots on test dataset (Row 1: LUT models; Row 2: NN models) (Col 1: SVM; Col 2: AZSPWM; Col 3: DPWMMin). 
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common mode currents with SVM, AZSPWM and DPWMMin 
are 3.32583 mA, 2.66876 mA and 1.36647 mA, respectively. 

The predicted peak common mode currents generated by 
LUT and NN models are compared with the measurement 
results in Table 3 and Table 4. Absolute error is used here. The 

absolute error percentages are around 10% which match the 
model performance on the test dataset. 

Table 3 Predicted peak CMI by LUT model 

PWM Measurement (A) LUT Prediction (A) Error (%) 

SVM 0.00332583 0.00344904 3.7047 

AZSPWM 0.00266876 0.00245095 8.1616 

DPWMMin 0.00136647 0.00116997 14.3798 

Table 4 Predicted peak CMI by NN model 

PWM Measurement (A) NN Prediction (A) Error (%) 

SVM 0.00332583 0.00346765 4.2641 

AZSPWM 0.00266876 0.00244687 8.3145 

DPWMMin 0.00136647 0.00125049 8.4876 

VI. CONCLUSION AND FUTURE WORK 

This paper proposes a method to solve the computation issue 
in the CMI estimation through a machine learning perspective 
compared with a lookup table, aiming to save the computation 
resource consumed by the DFI. The lookup table and neural 
network give similar performance in predicting maximum CMI. 
The neural network model saves more space than the lookup 
table does. In applications where lookup tables need to store lots 
of data, neural networks could be potential alternatives to 
replace lookup tables. In addition, at the current stage, DC bus 
voltage and fundamental frequency are constants. However, in 
electric vehicles, such two parameters are variable, so that using 
the lookup table is not an ideal choice because it will take too 
much space to store data for a different combination of 
modulation index, switching frequency, DC bus voltage, and 
fundamental frequency. Several large lookup tables may be 
generated in order to predict the peak CMI at different working 
operation points. In such case, a neural network could use one 
model to handle, treating those variables as input features and 
peak CMI as output target. Due to the limitation of data 
collected, neural network models in this paper still have room to 
be improved. After that, such ML-based CMI estimation module 
can be deployed on ARM to online decide PWM patterns, which 
will be covered in further research. 
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