

Ali Abur Personal Info

- Northeastern Professor in power systems,
- CURENT Modeling Thrust Coordinator
- Research Interests: State Estimation, Fault Location, Modeling and Simulation
- abur@ece.neu.edu

2020-2021 Research Projects

- 1. Modal Decoupled Three-Phase State Estimation for Non-symmetrical Unbalanced Power Grids
- 2. Network Model Parameter Error Identification in Three-Phase Power Grids
- 3. Multi-Area State Estimation of Three-Phase Power Grids
- 4. Topology Error Identification in Large Three-Phase Power Grids
- 5. Fault Location in Systems with Many Inverter-Based Renewables Using a Limited Number of DFRs

PMU-Based Decoupled SE for Unsymmetrical Power Systems Ramtin Khalili and Ali Abur

Project Goals

- Maintain the existing decoupled state estimation algorithm for three-phase power systems with un-transposed transmission lines.
- Extend the method to distribution systems with mixed-phased branches.

Barriers

- Three-phase coupled model complexity
- Non-symmetrical lines which cannot be decoupled

Methodologies to Overcome Barriers

- Use the modal transformation
- Apply compensation method to make the decoupling work for non-symmetrical and mixed-phase power systems

Research Achievements

 Fast and accurate SE that can be implemented using existing SE code for three-phase non-symmetrical power systems.

Parameter Error Identification and Estimation in Three-phase Networks Ramtin Khalili and Ali Abur

Project Goals

 Develop a computationally efficient method to detect and estimate network parameter errors for unbalanced three-phase systems.

Barriers

Model complexity in three-phase networks

Methodologies to Overcome Barriers

- Use the modal decoupling for detection
- Use compensation to handle line asymmetry

Research Achievements

- An efficient three stage parameter error identification tool is implemented for unsymmetrical three-phase power systems.
- Parameters of the three-phase line are estimated simultaneously.

Test A Test B m^{N0} r^{N+} 10.44 27.9 20.9103.2 λ^{N0} λ^{N+} 12.57 34.85 34.75 127.43 suspect TL 15 - 1941 - 42RXsuspect Par. 70.34 44.48 73.02 62.6340.52188.18 $\lambda^{N\phi}$ 9.1616.5577.07133.7612.75287.63 True value 0.020 0.225Err. value 0.0260.2925Est. value 0.0200.225Est. Iter 21

- Test A: r_{15-19}^{aa} , +30% error, PMU at bus 15
- Test B: x_{41-42}^{cc} , +30% error, PMU at bus 41

IDENTIFICATION, AND ESTIMATION OF SINGLE PARAMET

Multi-Area Distribution State Estimation Andre Langner and Ali Abur

8500-node system4 areas;3 DGs

Base Case

- Integrated SE
 - 3 iterations
 - J-index: 0.7524
 - 28.03 sec
- MASE Area no iterations
 3.36 sec 1 3
 2 4

3

4

Coord.

6

4

11

Multiple bad data

• 3 BD/area – single phase

$_{\rm O}$ Integrated SE

- 13 cycles
- J-index: 0.6612
- 223.09 sec

\circ MASE

- All areas identify their errors
- 7.28 sec

Topology Error Identification via Multi-Area Generalized State Estimation Andre Langner and Ali Abur

Topology errors

- Causes divergence
- Incorrect BD detection
- $_{\circ}~$ Switching miscommunication
- **Generalized State Estimation**
- Explicit modeling switching devices
- $_{\circ}~$ Power flows as state variables
- Computational burden

- NC 13-153 opens
- NO 151-300 closes
- Centralized SE:
- Converges in 11 cycles
- Incorrect bad data
- J-index: **57.536**
- RMSE: 3.019×10^{-2}

MASE:

Switch	Phase	P^{true} (kW)	P^{est} (kW)	P^N	Reported Status	Estimated Status
13-152	а	0.0	1.1	0.08	Closed	Open
	b	0.0	8.9	0.63	Closed	Open
	c	0.0	6.4	0.46	Closed	Open
151-300	а	340.6	171.7	9.92	Open	Closed
	b	254.6	133.9	7.73	Open	Closed
	с	276.6	151.8	8.76	Open	Closed

Fault location in power networks using a small set of digital fault recorders Cesar Galvez and Ali Abur

Project Goals

 Develop a robust fault location method that can be used for radial and meshed power networks containing inverter-based power sources.

Barriers

 Impedance based methods have limitations of fault location in the presence of IBPSs, unknown fault resistance, and asymmetry of the distribution and transmission lines.

Methodologies to Overcome Barriers

• Use of traveling waves to extract time of arrivals and model the network as a directed tree graph to estimate the fault distance.

Research Achievements

- Accurate Fault Location for any type of power networks.
- Robustness against bad data, time-synchronization, and measured errors

Fig. 1: 8-Bus Example System

