
Abstract—The consensus on the potential of market-targeting 
cyberattacks to cause catastrophic damage has driven recent 
research on electricity market cybersecurity analysis. This paper 
identifies two missing components in current literature. First, ISO 
revenue adequacy has not been analyzed under the context of 
cyberattacks. The false data injection attacks (FDIAs) could 
disturb the market settlement impacting revenue adequacy for 
ISOs. The lack of such analysis prevents ISOs from 
comprehensively assessing the financial consequences of market 
cyberattacks. Second, market attackers need to anticipate the 
market-clearing results to maximize their attack objectives. Thus, 
current literature focuses on formulating the attacker model and 
the market-clearing model as a bilevel problem. However, the 
coupling between the attack decision, the dispatch at ex-ante, and 
the price calculation at ex-post have not been explored. To fill 
those two research gaps, this paper first analytically explores the 
impact of FDIAs on real-time market operations on ISO revenue 
adequacy. Then, cyber-impact analysis is proposed to numerically 
analyze the revenue adequacy. The attacker model, ex-ante 
dispatch model, and ex-post incremental model are formulated as 
a trilevel problem to provide a reliable cyber-impact analysis on 
revenue adequacy. The proposed analysis and platform are 
demonstrated with the New-England 39-bus system.  

Index Term— cyberattacks, cyber-impact analysis, false data 
injection attacks (FDIAs), revenue adequacy, financial 
transmission rights, real-time market operations. 

NOMENCLATURE 
Superscript:  

DA, RT Indicating the variable/parameter in the 
real-time (RT) and day-ahead (DA) models. 

expost, 
exante 

Indicating the variable/parameter in ex-ante 
and ex-post models. 

att Indicating the variable/parameter is 
compromised by attacks. 

Sets  

Ng, Nd, Nb, Nl,  Set of generators, loads, buses, and lines in 
the system. 

Nl
+cog, Nl

-cog Set of positive and negative congested 
lines. 

Parameters:  

Pi
min, Pi

max The lower and upper generation capacity 
for the ith unit. 

ΔPmin, ΔPmax The lower and upper generation capacity 
for the hypothetical incremental unit. 

Fl
min, Fl

max The lower and upper transmission line 
rating for the lth line. 

ci Generation bidding price of the ith unit. 
GSFl-i Generation shift factors of bus i to line l 
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Di Load at the ith bus. 
ΔDi Real-time deviation for load at the ith bus. 
ΔPdi Hypothetical incremental load 
di Bidding price of dispatchable loads 
fi,j Bidding price for FTR from bus i to bus j. 
qi,j

max, qi,j
min Upper and lower bound of FTR 

transactions. 
ol

r, oi
d, oi

p, oi
c Penetration level for attacks on line ratings, 

loads, capacities, and bidding prices 
S Value of attack degrees 

Variables:  

Pi Generation dispatch for the ith unit. 
qi,j FTR transaction from bus i to bus j. 
qi Net FTR injection at bus i. 
λ 
 

Lagrangian multiplier for power balance 
constraint. 

γi
+, γi

- Lagrangian multipliers for ith upper and 
lower generation limits. 

μl
+, μl

- Lagrangian multipliers for lth upper and 
lower transmission limits. 

Δμl
+att, Δμl

-att The impact of attacks on μl
+ and μl

-. 
ΔPi

att The impact of attacks on the ith dispatch. 
δl

r, δi
d, δi

p, δi
c Attack decisions on line ratings, loads, 

capacities, and bidding prices. 
δl

+, δl
- Attack decisions for the lth congestion 

pattern. 
pi Attack value for ith generation capacity 
rl Attack value for lth line ratings. 
Δci Attack value for ith unit’s bidding. 
ΔDi

att Attack value for loads at bus i. 
ΔPi The impact of RT load deviation on the ith 

dispatch. 
ΔDi Load deviations in real-time at bus i 
LMPi Locational marginal price at bus i. 
N Net revenue/shortfall of market operations. 
PayFTR Payments to FTR holders. 
RDA, RRT Revenue surplus from DA and RT markets. 
ΔLFl RT line flow deviation from DA line flow 

at the lth line. 
ΔLFl

att The impact of attacks on ΔLFl. 
LFl

FTR Hypothetical FTR flow at lth line. 
ω Internal variables representing the 

multiplication of δl
+, δl

-, μl
+, and μl

-. 
φl

-, φl
+ Slack variables for negative/positive 

transmission constraint limits. 
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I. INTRODUCTION 

A. Background 
HE COVID-19 pandemic has forced many companies and 
business to operate through remote platforms, which have 

made everyday life and everyone more digitally connected than 
ever before. The cybersecurity has become a high priority in all 
aspects of life. 
 Although more than six years have passed since the 
devastating cyberattack in Ukraine disabled thirty power 
substations, the power grid has only become more vulnerable to 
cyber intrusions. Due to increasing digitalization and smart 
applications, the number of connections and sensors placed 
throughout the power grid is growing rapidly, widening the 
potential for data breaches and cyber intrusions. In March 2019, 
operators at control centers in the western U.S. lost 
communications with multiple generators for minutes because 
the internet-facing firewall was compromised and had to reboot 
[1]. In October 2019, a malware for illegal data extractions was 
identified in an Indian nuclear power plant network [2]. In May 
2020, a supply chain attack was launched to breach the IT 
networks of German energy and power companies [3]. The 
continuous occurrence of cyber events calls for immediate 
intervention today to prevent future cyberattacks on critical 
assets. 

B. Literature Review 

The deregulation of the electricity market has introduced 
competition and encouraged energy efficiency [4]. The 
electricity market in the U.S. clears hundreds of GW loads 
every day providing economic and reliable operation. However, 
the increasing grid digitalization has opened the electricity 
market to profit-oriented cyberattacks [5]. Since the initial 
discussion of market cyberattacks in [6], further research has 
been conducted on the aspects of electricity market 
cybersecurity. 

The existing research works on electricity market 
cybersecurity can be broadly divided into three major 
categories: (1) developing undetectable attack paths or 
strategies for gaining profit; (2) analyzing sensitivities, 
vulnerabilities, and attackers with limited abilities; (3) 
developing detection or defense strategies. 

 The first category includes congestion pattern attacks, 
topology attacks, line rating attacks, and various other attack 
strategies. In [7], electricity market critical parameters were 
identified to perform profitable attacks with undetectable false 
data injections. In [8], a profit maximization strategy was 
developed through false data injection in meter measurements. 
In [9], a cyber topology attack was formulated to mislead 
customers into paying higher bills by causing small price 
deviations. Research work [10] developed a new set of topology 
attacks including a line-addition attack, a line -removal attack, 
and a line switching attack. In [11], a transmission line rating 
attack was designed to manipulate the nodal price. In [12], the 
short-term load forecast was compromised to mislead the 
dispatch, which brings financial advantages to certain players. 
Summarizing this first category literature, most if not all 
parameters in the market-clearing model have been shown to be 
attackable and profitable. 

The second category focuses on analyzing the 
characteristics of market-targeting cyberattacks. In [13], the 
sensitivity of a corrupted sensor on locational marginal prices 
(LMPs) was analyzed, and the most sensitive bus and sensor 
were identified. Ref. [14] discussed the impact from bad 
topology data and bad meter data on LMP, and concluded that 
the compromised topology data was more detrimental than 
compromised meter data. In [1], a cyber-vulnerability analysis 
was provided to analyze vulnerability in the parameters of a 
market-clearing model. In [16], the vulnerability of 
compromising generation shift factors to impact the financial 
transmission rights (FTR) was analyzed. Research work [17] 
identified that the topology information was too extensive to be 
known by attackers, and developed a robust attack strategy for 
attackers with partial topology information. In [18], the impact 
of limited attacks on electricity market operations was analyzed. 
In [19], an independent component analysis was conducted for 
attackers to infer the system topology.  

The third category focuses on developing defense schemes. 
Since the attack path on electricity market operations is 
generally via state estimation, most defense schemes are 
targeting state estimation. In [21], a statistic consistency check 
method was proposed to detect attacks in state estimation. In 
[22], an online detection algorithm was developed to detect 
false data injection in state estimation. Additionally, in [23], a 
market-level defense scheme against cyberattacks was 
developed based on electricity price signals. 

Following the existing research works, this paper identifies 
two unexplored topics. The detailed motivations and 
contributions are presented in the next subsection. 

C. Motivations and Contributions 

Although research works have started to investigate power 
market cyberattacks, as presented in the above subsection, this 
paper identifies two missing components.  

Firstly, revenue adequacy, a vital financial consideration for 
ISOs, has not been investigated under the context of cyber 
intrusions. Specifically, a false data injection attack (FDIA) 
may disturb the market settlement and impact the revenue 
adequacy of ISOs under attack. The lack of such analysis 
prevents ISOs from comprehensively assessing the financial 
consequences of market cyberattacks. 

Secondly, the prevailing attack model commonly contains a 
nested real-time (RT) market-clearing model to formulate a 
bilevel optimization problem because the attacker needs to 
anticipate RT market-clearing results to maximize the attack 
objective. The ex-ante and ex-post schemes are two primary 
approaches used to settle the RT market by ISOs. For instance, 
the ex-ante scheme is adopted by NYISO, where the dispatch 
and pricing are both determined by the ex-ante model [24]. 
Various ex-post models are adopted at a number of ISOs, such 
as PJM, MISO, and ISONE [24], in which the dispatch is done 
by the ex-ante model while the market settlement is done by ex-
post incremental model. Previous research works, such as [1], 
[11], and [12], employ bilevel models where either an ex-ante 
model or an ex-post model is used at the lower level. These 
bilevel models either assume ex-ante schemes or consider that 
attacks happen only at ex-ante dispatch or at ex-post pricing, 
and thus, the consideration of the other is unnecessary. There is 
a lack of an electricity market cybersecurity model under ex-
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post scheme considering the coupling between attack decisions, 
the ex-ante dispatch, and the price calculation at ex-post. 

Therefore, this paper aims to address these two missing 
components. The detailed contributions are as follows: 

• This paper is the first attempt to investigate ISO revenue 
adequacy under the context of cyber intrusions. The revenue 
adequacy problem is formulated under the existence of 
cyberattacks. Sufficient conditions for cyberattacks causing 
revenue shortfalls are developed and analyzed. Four 
remarks on the impact of cyberattacks on revenue adequacy 
are presented in detail. The formulated conditions and 
remarks provide ISOs with a theoretical analysis foundation 
on the impact of cyberattacks on revenue adequacy. 

• The proposed cyber-impact analysis is the first attempt to 
model the coupling between attack decisions, ex-ante 
dispatches, and ex-post pricing, which provides ISOs a 
more reliable analysis platform to comprehensively 
evaluate potential financial consequences of cyberattacks. 
The proposed platform is applied to the New England 39-
bus system to demonstrate the severity of the potential 
revenue shortfall.  

D. Paper Organization 

The rest of this paper is organized as follows. Section II 
analyzes the impact of cyber intrusions on ISO revenue 
adequacy, and four remarks on the revenue adequacy are 
discussed in detail. In Section III, the cyber-impact analysis 
model is proposed and formulated. Each level is described in 
detail. Section IV presents reformulations and algorithms to 
solve the proposed model. Section V demonstrates the proposed 
platform on the New England 39-bus system.  Finally, Section 
VI discusses conclusions and directions for future studies. 

II. IMPACT OF CYBER-INTRUSIONS ON REVENUE ADEQUACY 
The prevailing two-settlement market-clearing process uses 

LMPs to settle electricity purchases and sales, which reflects 
the price of electricity generation, transmission loss, and cost of 
transmission congestions. As the name suggests, the LMP is 
calculated by the location where power is received or delivered. 
The generation bus and load bus are usually settled by different 
prices, which leaves a revenue surplus due to congestions. Thus, 
FTR is proposed to entitle transmission holders to receive 
revenue surplus.  

In general, a system is revenue adequate if the revenues 
collected from the two-settlement market-clearing process in 
the form of congestion payments are sufficient to fully fund 
payments for the FTRs. In this section, we first briefly discuss 
the two-settlement market-clearing scheme and FTR auction 
model. Then, revenue adequacy is analyzed under the context 
of cyber intrusions. Sufficient conditions for cyberattacks 
causing revenue shortfalls are developed, and four remarks are 
discussed in detail on the impact of cyberattacks on ISO 
revenue adequacy. 

A. Market-clearing Scheme and FTR Auction Model 

 Two-settlement market-clearing contains a day-ahead (DA) 
market and an RT market [25]. The DA market is cleared a day 
ahead, and the RT market offers adjustments for real time 

deviations. The ex-post pricing scheme has been widely applied 
in ISOs, such as ISO-NE, PJM, and MISO, for RT market-
clearing, where the dispatch is determined by the ex-ante model, 
while the LMP is calculated after the cycle of spot market by an 
ex-post incremental model.  
   The DA market-clearing model and RT ex-ante market-
clearing model have similar formulations as shown in (1)-(4) 
[5], and the difference lies in the forecast intervals. The LMPs 
are obtained by the dual variables of the single-interval 
economic dispatch model (1)-(4). The values of Fl

min and Fl
max 

are collectively determined by various limits such as thermal 
limits, transient stability limits, and voltage stability limits. The 
details of identifying such limits are not covered here since they 
are beyond the scope of this paper. 

 min
gN

i i
i

c P  (1) 

 
g d

N N

i i
i i

P D   (2) 

 min max
i i iP P P   (3) 

 min max

1

( ) ,  
bN

l l i i i l l
i

F GSF P D F l N


      (4) 

The formulation of LMP is shown in (5). 

 ( )
lN

i l i l l
l

LMP GSF   
    (5) 

The ex-post incremental model is shown in (6)-(10) [24]. 

 min d P
g d

N N
expost

i i j dj
i j

c P     (6) 

 P
g d

N N
expost
i dj

i j

P     (7) 

 min maxexpost
i i iP P P     (8) 

 
1

( ) 0, 
bN

expost cog
l i i di l

i

GSF P P l N




      (9) 

 
1

( ) 0,  
bN

expost cog
l i i di l

i

GSF P P l N




      (10) 

 The portion of FTR that can be awarded is required to be 
within limits when all FTRs are presented simultaneously in the 
system. The FTR auction model is shown in (11)-(14) [26]. The 
amount of FTR transactions is restricted by qi,j

max and qi,j
min. The 

FTR auction participants are mostly hedgers who purchase 
FTRs to hedge the congestion charges of their energy 
transactions. Those participants are not motivated for an 
unlimited amount of FTRs. Thus, it is natural to assume that the 
aggregate bid quantity of the FTR is bounded by a maximum 
value [26]. 

 , ,max
b bN N

i j i j
i j i

f q


  (11) 
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 , , ,  
b bN N

i i j k i b
j i k i

q q q i N
 

      (12) 

 min max

1

F F ,  
bN

l l i i l l
i

GSF q l N


     (13) 

 min max
, , , ,  { , } ,  i j i j i j bq q q i j N i j      (14) 

The above models are presented briefly as background, and 
the model details can be found in [5], [24], and [26]. 

B. Impact of Cyber-Intrusions on Revenue Adequacy 

Periodical FTR auctions are held monthly and yearly, and it 
decides the financial right allocation of transmission capacities. 
FTR auctions entitle the holder to receive a stream of revenues 
based on the hourly congestion price in the DA market. This 
paper considers the point-to-point type of transmission right. 
The FTR holder receives payments, which are equal to the FTR 
quantity multiplied by the price difference between the 
injection bus and withdrawn bus. The total payment to FTR 
holders under a DA market-clearing result is shown in (15). 

 
, ( )

b bN N
FTR DA DA

i j j i
i j i

Pay q LMP LMP


    (15) 

By replacing the LMP with equation (5), the equation (15) 
can be reformulated as (16). The payment to FTR holders is 
equal to the congestion price multiplied by the FTR quantity at 
all lines. 

, ( ) ( )

          ( )

b b

l

N N
FTR DA DA

i j l i l j l l
i j i l
N

FTR DA DA
l l l

l

Pay q GSF GSF

LF

 

 

 
 



 

    

  

 


 (16) 

The ISO collects payments from load aggregators and pays 
generation companies [27]. The net revenue in the DA market 
is formulated in (17). Equation (17) can be reformulated as (18) 
by (5), which means the net revenue is also equal to the 
congestion price multiplied by the transmission capacity at all 
lines. 

 ( )
bN

DA DA
i gi i

i

R D P LMP    (17) 

 max min
lN

DA DA DA
l l l l

l

R F F       (18) 

It should be noted that Fl
max is always higher than LFl

FTR, 
and the Fl

min is always lower than LFl
FTR because the FTR flow 

is constrained to be smaller than the line rating as in (13). 
Therefore, RDA is always greater than PayFTR because the 
Lagrangian duals for line flow constraints are always positive. 
As such, the FTR auction model ensures revenue adequacy at 
the DA market (RDA>PayFTR) under normal operations, which is 
also referred to as a simultaneous feasibility test [28]. 

 In the same vein, the net revenue for RT operation is shown 
in (19), which means the net revenue is equal to the deviation 
of RT line flow from the DA line flow multiplied by the RT 
congestion price. Under normal operations, RRT is non-negative 
because ΔLF is positive for nonzero μ+ and negative for nonzero 

μ-. Thus, revenue adequacy is always ensured, and it is 
independent of the dispatch results. The net revenue of ISOs is 
shown in (20). 
 ( )RT RT RT

l l l
l

R LF        (19) 

 DA RT FTRN R R Pay    (20) 
As presented in the literature review, cyberattacks can alter 

RT market-clearing results through various attack paths. 
Cyberattacks targeting DA market have not been fully explored 
and justified in the literature, and thus, they are not discussed in 
this paper. However, the discussion of DA market cyberattacks 
will be similar to RT market cyberattacks. RT cyberattacks can 
inject false data on bids, line rating, demand response, etc., 
which impacts both the ΔLF and the congestion price μ for RT 
operations. Then, (19) can be reformulated as in (21), which 
represents RT revenue under cyberattacks. 

, ( ) ( )RT att att RT att RT att
l l l l l

l

R LF                  (21) 

Assuming the cyberattack is the only unexpected event 
when μDA and μRT are the same, the revenue adequacy (20) can 
be reformulated as in (22). 

 

max

min    

( )

       ( )

       ( )

FTR DA
l l

l
FTR att DA

l l l

att att
l l

att
l l

l
att
l

F LF LF

LF LF

LF

F

N 



 





 

   

    

     

 
 (22) 

Therefore, if the value of N is negative, the cyberattack leads 
to revenue shortfalls. The sufficient conditions (but not 
necessary) can be developed as the following conditions A.1) 
and A.2) to make the value of N negative. 
A.1) For a positively congested line: 

 max,    FTR cog
l l l

att
lLF LF F l N     (23) 

 0,    att
l

cog
ll N     (24) 

A.2) For a negatively congested line: 
 min,    FTR cog

l l l
att
lLF LF F l N    (25) 

 0,    att
l

cog
ll N     (26) 

If an attacker can inject false data making ΔLF and μ satisfy 
A.1) and A.2), it is sufficient for the attack, causing an ISO 
revenue shortfall. The positively congested lines and negatively 
congested lines represent lines where the line flow values are 
equal to the upper limits and lower limits, respectively.   

Four remarks are discussed in detail on the impact of a 
cyberattack on revenue adequacy by the proposed sufficient 
conditions. The four remarks are also demonstrated in Section 
V on the New England 39-bus system by the proposed model 
in Section IV. 

Remark 1. Considering an important scenario when all 
transmission rights have been auctioned as shown in (27), the 
total payment to FTR holders PayFTR is equal to the revenue 
from DA operation RDA. Then, revenue adequacy purely 
depends on RT operations, which is an easier goal for attacks to 
achieve. 
 max min  ,   FTR

l l l lLF F or F l N    (27) 
With (27), the sufficient conditions A.1) and A.2) can be 
relaxed as (28)-(31), which ensure the negative revenue from 
RT operations. Equations (28) and (30) ensure ΔLFl at a 
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positive congestion line is negative and ΔLFl at a negative 
congestion line is positive. Equations (29) and (31) satisfy (24) 
and (26) with the help of line rating attack rl. Equations (28)-
(31) are sufficient conditions for cyberattacks causing negative 
RT revenue, and they are sufficient conditions for cyberattacks 
causing revenue shortfall when all of the transmission rights 
have been auctioned. 
 0,    att cog

l lLF l N     (28) 

 max ,  att cog
l l l lF r LF l N      (29) 

 0,  att cog
l lLF l N     (30) 

 min ,  att cog
l l l lF r LF l N      (31) 

Remark 2. Generally, RT demands slightly deviate from the 
DA forecast. When load forecast error is considered, (28)-(31) 
can be reformulated as (32)-(35). It is worth noting that when 
load forecast errors contribute to relieving congestion (negative 
or positive), it helps the cyberattack cause revenue shortfalls 
because (32) and (34) can be satisfied by particular load forecast 
errors, instead of cyberattacks. It is also worth mentioning that 
load deviations do not necessarily worsen/relieve the shortfall 
created by an attack but that deviations do increase/decrease the 
value of necessary false data being injected. 
 0,    att cog

l lLF LF l N       (32) 

 max ,  att cog
l l l lF r LF LF l N        (33) 

 0,  att cog
l lLF LF l N       (34) 

 min ,  att cog
l l l lF r LF LF l N        (35) 

The incremental change in the line flow caused by load 
forecast error is shown in (36). The impact of an attack on the 
value of line flow is shown as in (37). Therefore, the sufficient 
conditions (32)-(35) can be reformulated as (38)-(41), which 
relates the sufficient conditions with market parameters (attack 
paths). 
 ( )l i i l i

i

LF D P GSF      (36) 

 ( )att att att
l i i l i

i

LF D P GSF      (37) 

( ) 0,  att att cog
i i i l i l

i

D D P GSF l N
         (38) 

max ( ) ,  att att cog
l i i i l i l

i

F r D D P GSF l N
          (39) 

 ( ) 0,  att att cog
i i i l i l

i

D D P GSF l N
         (40) 

 min ( ) ,  att att cog
l i i i l i l

i

F r D D P GSF l N
          (41) 

Remark 3. Injecting false data on demand, bidding, and unit 
capacity does not affect revenue adequacy if not combined with 
transmission line rating attacks. From the necessary conditions, 
although the above three types of attack can manipulate the 
value of congestion price, meaning that (24) and (26) can be 
ensured, conditions (23) and (25) cannot be satisfied unless 
combined with the transmission line rating attack. However, the 
transmission line rating attack alone can theoretically satisfy the 
sufficient conditions A.1) and A.2). From this observation, the 
transmission line rating attack ensures the feasibility of causing 

a shortfall and the other types of attacks enhance the severity of 
the resulting shortfall. 

Remark 4. Unexpected line derating and outage may also lead 
to a revenue shortfall [29]. As shown in (32)-(35), when 
unexpected line derating happens with a particular load forecast 
error, high revenue shortfalls could happen without a 
cyberattack. However, compared with unexpected contingency 
events, the threat from cyberattacks is much more severe 
because it not only strategically selects the most effective lines 
to de-rate, but is also able to inject false data at other parameters 
to enhance the revenue shortfall. Furthermore, a conventional 
procedure for allocating revenue shortfall is that an ISO 
prorates the shortfall to all FTR settlements. However, 
allocating the shortfall caused by attacks could make some 
FTRs lose the ability to hedge against congestion rents for 
bilateral transactions due to the significant number of shortfalls. 

In summary, this section analytically discusses the impact 
of cyberattacks on revenue adequacy and sufficient conditions 
for revenue shortfalls. The next section will formulate an 
impact analysis platform to numerically investigate revenue 
adequacy under the context of a cyberattack. 

III. CYBER-IMPACT ANALYSIS PLATFORM FOR ISO REVENUE 
ADEQUACY 

In Section II, the impacts of cyberattacks on revenue 
adequacy have been analytically investigated. This section 
presents a cyber-impact analysis platform to numerically 
evaluate the impact of cyberattacks on revenue adequacy.  

The proposed cyber-impact platform places an attacker 
model at the upper-level, an ex-ante model at the middle-level, 
and an ex-post model at the lower-level. The ex-post scheme is 
shown in Section II.A, where the dispatch is determined by ex-
ante model, while the market is cleared after the cycle of the 
spot market using an ex-post incremental model. This paper 
proposes a trilevel model to consider the coupling between 
attacks, ex-ante dispatches, and ex-post pricing. Prior bilevel 
models, such as [1], ignore such coupling, which makes them 
less desirable under the context of this paper. The proposed 
trilevel model is a more proper way to estimate the impact of 
cyberattacks under ex-post scheme. The detailed mathematical 
model and descriptions are provided in the following 
subsections. 

A. Assumptions  

Several assumptions and notes related to the proposed 
model are listed as follows: 
• The proposed model is a cyber-impact analysis model for 

ISOs. Therefore, the upper-level model considers as many 
attack paths as possible. Although some parameters may not 
be easily compromised unless the cyber threats are from 
insiders, the proposed model considers comprehensive 
scenarios for market operators to analyze revenue adequacy. 
The proposed analysis model can be simplified by removing 
specific attack paths if decision makers consider these 
parameters to be perfectly secure or unpractical. 

• The potential attack targets are the parameters in the market-
clearing database. As discussed in the literature review, 
most if not all parameters of the RT market-clearing model 
have been justified as attackable and profitable. This paper 
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considers the following false data injection based on 
previous literature: demand [12], line rating [11], unit 
capacity [30], bidding [31], and congestion pattern [6]. 
Other FDIAs can be easily integrated, but it is worth noting 
that the proposed analysis model does not apply to FDIAs 
that assume operators are insiders. The reason is that if the 
operator is the insider and does not care about the revenue 
adequacy, the proposed analysis model will not be 
applicable. 

• The proposed model uses penetration levels and attack 
degrees to model the success and ability of attacks. The 
attack degree indicates the number of parameters that the 
attacker can perturb. For a wide range of attack targets, the 
attack ability restricts the attacker to select limited targets, 
which means that attacks are successful on a limited number 
of the parameters and will not be successful on the other 
parameters. The penetration level restricts the maximum 
percentage of parameters that the attack can manipulate 
without alerting the operator. If the operator believes that 
some attacks are not likely to happen, the penetration level 
can be set to 0. The modeled attack is assumed to know the 
system topology. The clearing results of FTR and DA 
markets are generally public on ISOs’ websites. 

• Cyberattacks could lead to ISO revenue shortfall, as shown 
in the above remarks. Multiple types of attackers may be 
interested in launching such attacks, like malicious agents 
whose goal is to disrupt power system operations. The 
revenue shortfall would severely impact on the FTR 
transactions and market settlements leading to a chain of 
damages in power system operations. The revenue shortfall 
could also be a side-effect of attacks whose goal is not the 
revenue shortfall. For example, profit-oriented cyberattacks 
inevitably alter the power market-clearing result, potentially 
leading to revenue shortfall. Although the side effect is 
generally not a concern for the attacker, this paper provides 
the revenue adequacy analysis for market operators to 
comprehensively analyze the impact of cyberattacks on 
market operations.    

B. Upper-level Model (Attacker Model) 

To investigate the impact of a cyberattack on revenue 
adequacy, the objective of the attacker model is set to maximize 
the revenue shortfall (22), as shown in (42).  
 max  N  (42) 

The data sources, i.e., demand, line rating, unit capacity, 
bidding, and congestion pattern mentioned in the second bullet 
of subsection III-A, are assumed to be susceptible to attacks in 
the proposed platform, as shown in (43)-(47). The attack values 
on the parameters are constrained by the penetration level o, the 
attack decision δ, and their original value. The attack decisions 
δ are binary variables indicating if the corresponding parameter 
is attacked. The penetration level o is a parameter indicating the 
maximum percentage of the parameter that the attack can 
manipulate. Equation (47) shows that the congestion pattern 
attack for a line is either for positive congestion or for negative 
congestion. The details of congestion pattern attacks are 
discussed in the lower-level model. 
 d d att d d

i i i i i i iD D D            (43) 

 min maxr r r r
l l l l l l lF r F          (44) 

 max maxp p p p
i i i i i i iP p P           (45) 

 c c c c
i i i i i i ic c c           (46) 

 1l l     (47) 
The attacker is assumed to have limited attack abilities. The 

attack degree S restricts the number of parameters that the 
attacker can perturb, as in (48). 

 (1 ) (1 )r p c d
l i l l i i

i l

S             
 (48) 

In summary, the upper level models an envisaged attacker 
who aims to create a revenue shortfall with limited abilities. 

C. Middle-level Model (Ex-ante Dispatch Model)  

The injected false data impacts the RT economic dispatch 
obtained by the ex-ante model (1)-(5) because some parameters 
are compromised. The upper-level decision variables impact 
the bid at the objective (1), unit capacity at (3), line rating at (4), 
and load in (2) and (4). Therefore, the ex-ante model (1)-(5) can 
be reformulated as in (49)-(54) considering cyberattacks. The 
false data injected by attackers deviate dispatch decisions, 
which are sent to generators. The compromised dispatch, in turn, 
impacts the goal of the attacker.  

 min ( )
gN

exante
i i i

i

c c P    (49) 

  
g d

N N
exante exante
i i

i i

P D   (50) 

 + , exante att
i i i i bD D D D i N       (51) 

 min maxexante
i i i iP P P p    (52) 

 max

1

( ) ,
bN

exante exante
l i i i l l l

i

GSF P D F r l N


       (53) 

 min

1

( ) ,
bN

exante exante
l i i i l l l

i

GSF P D F r l N


       (54) 

D. Lower-level Model (Ex-post Pricing Model)  

The ex-post pricing model is an incremental model based on 
the results of state estimations. A remote transmission unit 
collects various measurements, such as generation and line flow, 
and sends them to the state estimator. The resulting data, such 
as generations and congestion patterns, are used for calculating 
market settlements. The random errors are filtered by bad data 
detection, and thus, the injected false data is assumed to be the 
only source of bad data. Similar to (49)-(54), with the 
consideration of the compromised parameters, the original ex-
post model (6)-(10) can be reformulated as (55)-(59). The ex-
ante model determines the dispatch, and state estimation 
outputs the congestion pattern, which provides the transmission 
binding constraints in the ex-post model as in (58) and (59). The 
congestion pattern attack can compromise state estimation 
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results to manipulate transmission binding constraint sets Nl
+cog 

and Nl
-cog in (58) and (59).  

 min ( )
gN

expost
i i i

i

c c P    (55) 

 0
gN

expost
i

i

P   (56) 

 min maxexpost
i i iP P P      (57) 

 ,

1

0,
bN

cog mexpost
l i i l

i

GSF P l N




     (58) 

 ,

1

0,
bN

cog mexpost
l i i l

k

GSF P l N




     (59) 

The ex-post model determines the LMP at each bus to clear 
the market, which impacts the value of the attack objective. The 
reformulations and solution algorithms for the proposed model 
are presented in the next section. 

IV. SOLUTION METHOD 
The structure of the proposed trilevel problem is different 

from conventional trilevel models where each level interacts 
with each other. The middle-level ex-ante model only passes 
the congestion status to the lower-level ex-post model, and the 
lower-level ex-post model does not impact the solution of 
middle-level problem. This characteristic will be exploited in 
the proposed solution algorithm to make it efficient, which is 
specifically discussed in subsection IV-C. The detailed solution 
of the proposed trilevel problem is presented in the following 
subsections. 

A. Modeling the Transmission Binding Constraint Set 

The first step of solving the trilevel problem is to explicitly 
model the set Nl

+cog,m and Nl
-cog,m in the lower-level ex-post 

problem. Here, Nl
+cog,m and Nl

-cog,m indicate the set of positively 
and negatively congested lines, which may have been 
compromised by attackers. The formulation of Nl

+cog,m and Nl
-

cog,m depends on the attack decision on the congestion pattern 
and the market-clearing results at the ex-ante model in the 
second level. The line flow constraints in (53) and (54) can be 
reformulated to (60) and (61) with a slack variable φ. When φ+ 
or φ- for the lth line is 0, the lth line is positively or negatively 
congested; otherwise, the lth line flow constraint is not binding. 
Then, the line flow constraints (58) and (59) in the ex-post 
model can be reformulated as in (62) and (63). When φl

+ or φl
- 

for the lth line is 0 in the ex-ante model, the lth line constraint is 
binding in the ex-post model. When φl

+ or φl
- for the lth line is 

not 0 in the ex-ante model, the lth line constraint is not binding 
in the ex-post model. Further, the binary variable δl

+ and δl
- for 

the congestion pattern attack decides the number of 
transmission binding constraints at the ex-post pricing model. 
When δl

+ or δl
- is 0 (i.e., congestion pattern attack happens at 

the lth line), the constraint (62) or (63) is removed. When δl
+ or 

δl
- is 1 (i.e., no attack), the constraint (62) or (63) stays. Thus, 

equations (62) and (63) are equivalent to (58) and (59). 

The congestion pattern attack in this model only considers 
relieving a congested line because relieving a congested line is 
generally more feasible than congesting a line. For example, if 
a line is originally congested at its upper limit 200 MW, then 
the attack only needs to make a slight change to un-congest the 
line flow (e.g., changing it by 1 MW to 199 MW). As such, the 
attack vector only contains small values in order to remain 
undetectable. 

 max

1

( ) ,
bN

exante exante
l i gi i l l l l

i

GSF P D F r l N




       (60) 

 min

1

( ) ,
bN

exante exante
l i i i l l l l

i

GSF P D F r l N




       (61) 

 
1

, 
bN

expost
l l i i l l

i

GSF P l N  




     (62) 

 
1

, 
bN

expost
l l i i l l

k

GSF P l N  




      (63) 

B. Converting the Lower-level Problem 

Next, the lower-level problem is converted with Karush-
Kuhn-Tucker (KKT) conditions [32]. The lower-level problem 
(55)-(59) is equivalent to (56), (57), (62), (63), and (64)-(69) 
because the lower-level problem is a convex model. Thus, with 
the value of φl from the ex-ante model and the attack decision 
from the attacker model, solving the KKT equations gives the 
LMP at each bus, which is the same as solving (55)-(59). 

(56),  (57),  (62),  (63)  

 ( ) 0expost expost expost expost
i i i ic c             (64) 

 
1

( )
LN

expost expostexpost
l i l l l l

l

GSF      




      (65) 

 
1

( ( ) ) 0
bN

expost expost
l l l i i l

i

GSF P    




      (66) 

 
1

( ( ) ) 0
bN

expost expost
l l l i i l

i

GSF P    




       (67) 

 min( ) 0expost expost
i i iP P      (68) 

 max( ) 0expost expost
i i iP P      (69) 

It is worth noting that although the variables representing a 
congestion pattern attack are binary variables in the lower-level 
model, the upper-level variables are treated as parameters in the 
lower-level problem. When the value of δl is 0, all the KKT 
conditions related to the lth transmission constraint are removed. 
When the value of δl is 1, the KKT conditions related to the lth 
transmission constraint are included. 

C. Converting the Middle-level Problem 

The structure of the proposed model is shown in Fig. 1.  
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Fig. 1. Structure of the proposed model 

The trilevel coupling is explained as follows. The upper-level 
decision variable impacts the optimal solution of the middle-
level and lower-level problems. The optimal solution of the 
middle-level and lower-level problems also impact the 
optimality of the upper-level problem. Thus, the upper-level 
problem interacts with both the middle-level and lower-level 
problems.  

However, different from conventional trilevel problems, the 
middle-level and lower-level problems in the proposed model 
exhibit a one-way relationship. The middle-level problem only 
needs to pass the value of φl to the lower-level and does not 
need to anticipate the solution of the lower-level problem for its 
own optimization. Thus, the middle-level problem can also be 
converted by KKT conditions based on this unique one-way 
relationship. Eventually, the model is converted into the upper-
level problem with two sets of KKT conditions. The middle-
level problem (49)-(54) can be converted to KKT conditions as 
in (50)-(52), (60), (61), and (70)-(75). Then, the optimization 
problem (42)-(59) is equivalent to solving (42)-(54), (56), (57), 
(60)-(63), and (64)-(75). 

(49) (54),  (60),  (61)  

0exante exante exante exante
i i i ic c             (70) 

 
1

( )
LN

exante exante exante
l i l l

l

GSF   




    (71) 

 
1

( ( ) ) 0
bN

exante exante exante
l l i i i l

i

GSF P D  




     (72) 

 
1

( ( ) ) 0
bN

exante exante exante
i l i i i l

i

GSF P D  




       (73) 

 min( ) 0exante exante
i gi giP P     (74) 

 max( ) 0exante exante
i i i iP P p      (75) 

In summary, Sections III presents the trilevel cyber-impact 
analysis model formulation, and Section IV develops the 
solution techniques of the trilevel model based on the model 
characteristics. The unique interaction between the lower-level 
model and the middle-level model, as discussed in the opening 
paragraph and subsection IV-C, is utilized to make the solution 
algorithm efficient. 

V.  CASE STUDY 
In this section, the impact of cyberattacks on ISO revenue 

adequacy is analyzed on the New England 39-bus system using 

the proposed platform. The detailed system parameters can be 
found in [33] and [34], and the system topology is sketched in 
Fig. 2 using CURENT Large-scale Test Bed (LTB) [35]. The 
simulation studies were performed with MATLAB 2018 on a 
PC with Intel i7-8650U processor and 8GB RAM.  

Four case studies are conducted to show the impact of 
cyberattacks on revenue shortfall in detail. The four case studies 
discuss and analyze the four remarks in subsection II-B 
accordingly. 

 
Fig. 2.  One-line diagram of the New England 39-bus system 

(for illustration only) 

A. Case Study 1: Margin of the Revenue Shortfall 

As shown in Remark 1, cyberattacks can more easily cause 
revenue shortfall when all transmission rights are auctioned. If 
only a part of the transmission capacity is auctioned, the 
unauctioned capacity leaves ISOs revenue surplus (margin), 
which can be used to recover shortfalls.  

As shown in Table I, the revenue margin decreases 
proportionally with the transmission capacities margin. When 
all of the capacities are auctioned, the revenue margin goes to 
0. An attack scenario is performed on the proposed analysis 
platform to analyze the revenue shortfall. The attack is assumed 
to have three attack degrees and a 20% penetration level. The 
resulting shortfall by the attack is shown in the third column of 
Table I. 

Table I. Margin of The Revenue Shortfall 
Capacity Margin  Revenue Margin  Shortfall by attack  

0% $0 $145,026 
25% $76,801 $68,225 
50% $153,602 N/A (-$8577<0) 
75% $230,403 N/A (-$185,378<0) 

 When all the transmission capacities are auctioned (i.e., the 
margin is 0), the attack can cause a shortfall of $145,025. 
However, the attack cannot cause shortfalls when the capacity 
margin is high. For example, when the margin is 75%, a 
shortfall is not achievable. Furthermore, 47.2% is the critical 
point for the capacity margin, below which the cyberattack can 
cause a revenue shortfall. 
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It is worth mentioning that a conservative revenue margin 
may lead to inefficient FTR auctions and market operations, 
although the revenue margin can recover part of the revenue 
shortfall led by the attacks. Furthermore, the capacity margin 
does not impact the selection of attack decisions although it 
diminishes the effectiveness of cyberattacks.  

B. Case Study 2: Importance of Real-time Load Deviations 

As shown in Remark 2, RT load deviations can 
increase/decrease the amount of false data needed to be injected.   
The following example is considered to demonstrate this 
phenomenon. If the attacker wants to induce a shortfall greater 
than $20,000, a negative 90MW line rating attack at line 2-30 
can be combined with an attack at bus 25 that increases the 
demand by 150MW. Similarly, if the RT deviation at bus 25 is 
more than 150MW, the same shortfall can be achieved without 
applying the demand attack.  

Furthermore, based on the proposed cyber-impact analysis 
model, RT load deviations impact the effectiveness of 
cyberattacks on revenue shortfall. Some load deviations may 
reduce the shortfall caused by attacks, and some load deviations 
may increase the shortfall caused by attacks. The cyber-impact 
analysis platform is performed iteratively considering load 
deviation at each bus from negative 60% to positive 60%. Fig. 
3 shows a heat map describing the impact of load deviation at 
each bus on revenue shortfall. The brighter/darker color means 
that the load deviation decreases/increases the effectiveness of 
cyberattacks. From the heat map, the load deviations at bus 4, 
bus 9, bus 16, bus 21, and bus 29 decrease the shortfall. The 
load deviation at bus 39 can increase the shortfall. Load 
deviations at other buses have no impact.  

This phenomenon aligns with Remark 2 that load deviations 
can help the false data injection but do not necessarily impact 
the value of shortfalls. The reason is that some load deviations 
cause a step change at shadow prices, while other deviations do 
not cause step changes. Thus, load deviation is a vital 
consideration for designing cyberattacks causing shortfalls. It is 
worth mentioning that the heat map only shows single bus load 
deviations for illustrative purposes, and that load deviation may 
have more impact if combined at different buses. 

 
Fig. 3. Impact of load deviation at each bus on revenue 

shortfall 

C. Case Study 3: Importance of Different Types of Attacks. 

 Different types of false data may contribute differently to the 
revenue shortfall. As shown in Remark 3, cyberattacks on 
demands, bids, and unit capacities do not affect revenue 
adequacy if the attack is not combined with transmission line 
rating attacks. Thus, the cyber-impact analysis is first 
performed on the above three types of attack individually, and 
these three attacks cannot cause shortfalls, as shown in the first 
row of Table II. Any penetration level (i.e., the amount of 
injected false data) cannot induce shortfalls when rl is 0. The 
attack on the congestion pattern is not applicable to this case 
study because the congestion status is a binary variable that 
does not have a penetration level. 

Table II. Effectiveness of different types of attacks  

Penetration 
level 

Shortfall by 
load attack 

($ ×104) 

Shortfall by 
bid attack 
($ ×104) 

Shortfall by 
unit attack 
($ ×104) 

rl = 0 0 0 0 
0% 6.96 6.96 6.96 
5% 6.96 7.52 6.96 

10% 6.96 8.07 6.96 
15% 7.86 8.62 7.86 
20% 7.86 9.18 7.86 

 The rest of Table II shows the effectiveness of load attack, 
bid attack, and unit capacity attack with respect to penetration 
levels when a line rating attack is fixed to a 20% penetration 
level (i.e., rl is 20%). The shortfall experiences step changes 
with load attack and unit capacity attack, which means the 
shortfall stays the same until the penetration level increases to 
a certain value. For example, the shortfall changes from 
$6.96×104 to $7.86×104 when the penetration level increases 
from 10% to 15%. The reason is that load attack and unit 
capacity attack induce a step change for shadow prices when 
the penetration level increases from 10% to 15%. The shortfall 
changes linearly with the penetration level of the bid attack 
because the value of the bid attack at the marginal unit directly 
impacts the value of the shadow prices. Table III shows the 
shortfall induced by the line rating attack. Similarly, the higher 
the penetration level, the larger the shortfall will be. The second 
row of Table II, where attacks on load, bid, unit capacity are at 
0% penetration and the attack on line rating are at 20% 
penetration, has the same shortfall as the last column in Table 
III. If Table II is compared with Table III, the line rating attack 
provides a base value for the shortfall, and the other attacks 
further increase the shortfalls. This phenomenon aligns with 
Remark 3 that line rating attacks serve as a base for causing a 
shortfall, and the other attacks further enhance the severity of 
the shortfall.  

Table III. Effectiveness of line rating attack 

Penetration level 5% 10% 15% 20% 

Shortfall by line rating 
attack ($ ×104) 1.08 2.74 4.11 6.96 

D. Case Study 4: Severity of Revenue Shortfall Caused by 
Cyberattacks 

 As indicated in Remark 4, cyberattacks are able to cause a 
much more significant impact on revenue shortfall than other 
unexpected contingency events. This case study compares 
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unexpected contingency events and cyberattacks using the 
proposed cyber-impact analysis model. 
 In a DA market-clearing scenario, three lines are congested: 
line 2-3, line 2-30, and line 6-11. Thus, to induce a revenue 
shortfall, three unexpected contingency events are considered 
to be 10% line-derating at each of the lines. To show the 
severity of the revenue shortfall caused by a cyberattack fairly, 
the penetration level of the line rating attack is also considered 
to be 10%, and the line rating attack can only perform at one 
line. Fig. 4 compares the revenue shortfall caused by 
cyberattacks with unexpected contingency events under 
different attack degrees (i.e., from 1 to 10). Higher attack 
degrees mean more attacks are successful in manipulating 
parameters. When the attack degree is higher than 7, the 
resulting revenue shortfall stays the same, which means that the 
attacker can achieve the most desirable result if 7 of the attacks 
on parameters are successful. Under such scenarios, 
cyberattacks can lead up to shortfalls which are 141%, 903%, 
and 180% of that caused by contingency event 1, event 2, and 
event 3, respectively. It is worth noting that some attacks could 
be easily detected, and the capability of the attacker could be 
limited. Therefore, the attacker may not always achieve an 
attack degree as high as 7. As shown in the curve of Fig. 4, a 
lower attack degree makes a lower revenue shortfall. However, 
the revenue shortfall caused by attacks is still significant 
compared with contingency events, even when the attack 
degree is low. For example, when the attack degree is as low as 
2, the cyberattack can lead to shortfalls which are 115%, 481%, 
and 148% of that caused by contingency event 1, event 2, and 
event 3, respectively. Therefore, the threat from cyberattacks is 
much more severe than unexpected contingency events. 

 
Fig. 4. Comparison of shortfall between contingency events 

and cyberattacks 

 Further, the significant amount of shortfall impacts bilateral 
transactions. Conventional solutions to cover the revenue 
shortfall are prorating the settlements to all FTRs, which makes 
the FTR lose the ability to create a perfect hedge for bilateral 
contracts when the shortfall is high. The allocation procedure in 
[36] is an example. Considering a FTR transaction between 
node 3 and node 2, the revenue loss due to the shortfall 
allocation under contingency events and cyberattacks is shown 
in Table IV. The attack can induce up to an 89.4% revenue loss 
for this FTR, which basically makes the FTR lose its ability to 
hedge the congestion charge for bilateral transactions.  

Table IV. Revenue loss for FTR 3-2 due to allocation 
 Event 1 Event 2 Event 3 Attack 

Revenue 
lost (%) 48.4 32.3 36.8 Up to 

89.4 

 Figure 4 and Table IV show that the cyberattack could severe 
a revenue shortfall and damage FTR transactions. It is worth 
noting that the revenue shortfall could be intentionally induced 
by malicious agents through cyberattacks to disrupt the FTR 
transactions and market settlements. The revenue shortfall 
could also be a side-effect, even if the revenue shortfall is not 
the main target. For example, the leftmost subplot of Figure 4 
shows that a cyberattack at line 2-3 would lead to a $21,956 
revenue shortfall. It is possible that the attack at line 2-3 aims 
to create congestions for higher LMPs. However, the $21,956 
revenue shortfall is inevitably induced by such attacks.  

VI. CONCLUSION 
 In conclusion, this paper identifies two missing components 
in current electricity market cybersecurity research: (1) the lack 
of impact analysis of cyberattacks on ISO revenue adequacy, 
which prevents ISOs from comprehensively understanding the 
financial consequences of cyberattacks; and (2) the lack of 
investigations into the trilevel coupling between attack 
decisions, ex-ante dispatches, and ex-post pricing because 
previous research focuses only on the bilevel modeling of the 
attack and RT market-clearing.  

Therefore, this paper first provides a theoretical analysis of 
the impact of cyberattacks on revenue adequacy by formulating 
sufficient conditions and summarizing four remarks. Next, a 
cyber-impact analysis platform for revenue adequacy analysis 
with an attacker model on the upper-level, an ex-ante model at 
the middle-level, and an ex-post model at the lower-level is 
proposed to numerically investigate the impact of cyberattacks 
on revenue adequacy. In the end, the New England 39-bus 
system is applied to discuss the theoretical analysis remarks on 
impact of cyberattacks on revenue adequacy with the proposed 
numerical analysis platform. 
 Our future works will focus on combining the proposed 
cyber-impact platform with artificial intelligence techniques 
providing a more efficient and accurate analysis platform, 
where the analytical sensitivity analysis is provided for each 
falsely injected data type.  
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