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Abstract—Runge-Kutta methods have been widely used in 
power system time-domain simulations. However, conventional 
Runge-Kutta methods can not preserve the total energy of the 
simulated system because they are not symplectic integrators. For 
the explicit Euler method and fourth-order Runge-Kutta method, 
this paper first finds explicit formulae on how the total energy of 
the simulated system trajectory can change with the integration 
time step by using the Hamiltonian system formulation of a single-
machine-infinite-bus system. The formulae discover the existence 
of a critical time step for energy-preserving simulation. Then, the 
formulae are used to evaluate the error in observed damping of the 
system as well as the correction if the simulation is conducted for 
an extended period with a time step different from the critical time 
step. Finally, the formulae are applied to Kundur’s two-area four-
generator system regarding its dominant mode. 

Keywords—Time-domain simulation, symplectic integrator, 
energy preservability, Hamiltonian system. 

I. INTRODUCTION  
Time-domain power system simulation is critical in 

assessing dynamic behaviors and transient stability of a power 
system subject to a disturbance [1]-[4]. Explicit Runge-Kutta 
(R-K) methods are adopted in most simulation tools for solving 
an initial value problem of the ordinary differential equations 
(ODEs) of a power system model for a given contingency. In 
general, a small integration time step is needed to avoid 
numerical instability and limit errors in simulation results over a 
desired simulation period. However, when simulation needs to 
be conducted for an extended period, e.g. for a power grid 
emulator or testbed system that needs to conduct numerical 
simulation for minutes to hours [5],[6], simulation errors can 
accumulate and their influences on the accuracy of simulation 
can become more significant. One example on a result of such 
errors is the incredible damping ratio estimated directly from the 
numerical simulation result since the errors can introduce 
negative or positive damping; another example is that thegrowth 
of the system total energy may lead to the numerical instability 
of the simulation. A fundamental cause of the error 
accumulation is that R-K methods are not structure-preserving 
numerical solvers or in other words, they do not fall into the type 
of symplectic integrators which can preserve the structural 
information, e.g. the total energy, of the simulated system [3]. 
Although symplectic variants of R-K methods have been 
proposed in literature for more accurate results of extended-term 
simulations, these variants are often implicit and are slower than 
conventional explicit R-K methods. There have been very few 

papers concerning the error analysis of conventional R-K 
methods in power system simulation if they fail to preserve the 
total system energy.  

This paper studies whether a power system can preserve its 
total energy when simulated by two most widely used explicit 
R-K methods, the Euler method and the fourth-order R-K (R-K 
4) method. It is discovered that the total energy cannot be 
preserved for all cases with the Euler method and most cases of 
the R-K 4 method unless a critical time step is adopted. By using 
a Hamiltonian system formulation of the single-machine-
infinite-bus (SMIB) system, the paper finds explicit formulae on 
how the total system energy can change with the integration time 
step. The concept of “numerical damping” is adopted to define 
the fake damping, positive or negative, added to the simulation 
result if the simulation fails to preserve the energy [8]. 
Sometimes numerical damping can eliminate high frequency 
modes to stabilize the system in structural dynamics problems 
[9]. However, in power system simulations this may introduce 
fake damping for modal analysis which should be avoided. 
Using the formulae, errors in simulations are analyzed to predict 
the numerical instability. Also, a correction that cancels 
numerical damping can be achieved towards finding the true 
damping of the system from non-energy-preserving simulation 
results. Also, appropriate integration steps are suggested for 
extended-term simulations [10],[11] in which energy 
preservation is desired. Finally,  because the SMIB system can 
be considered as the system equivalent regarding inter-area 
oscillations of a two-area power system. The formulae and 
conclusions on the SMIB system are extended and tested on 
Kundur’s two-area four-generator system. 

The rest of this paper is organized as follows. Section II 
derives and studies the formulae on the change of the total 
energy for an undamped SMIB system simulated by the Euler 
method and R-K 4 method, proposes numerical damping, and 
discusses its correction for the SMIB system. Section III 
presents case studies on both the SMIB system and the two-area 
system. Conclusions are summarized in section IV. 

II. ENERGY PRESERVATION WITH R-K  METHODS ON AN 
SMIB SYSTEM  

This section will adopt a Hamiltonian system formulation of 
the SMIB system to find formulae on how its total energy 
changes with the integration step. Both linearized and nonlinear 
models are studied on the SMIB system subject to small and 
large disturbances. Then, the numerical damping is proposed 
and corrected toward an estimate of the true damping of the 
system simulated by the R-K 4 method. This work was supported in part by the ERC Program of the NSF and U.S. 
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A. Considering a small disturbance 

Subject to a small disturbance, the SMIB system without 
damping can be approximated by its linearized model, i.e. a 
second-order harmonic oscillator system described by: 

 0Mx Kx   (1) 

where x is the state variable on its rotor angle deviation, M is 
the inertia and K is the positive recovering force constant. 
Rewrite (1) into the form (2) of a Hamiltonian system about the 
position q and momentum p: 

 
,

p Kq
pq

M

 






 (2) 

where 

 
p Mx
q x





. (3) 

Without damping, the total energy of the system should be 
unchanged and equal to the sum of kinetic and potential 
energies: 

 
2 2

2 2
p KqE
M

  . (4) 

To solve (2), first consider the Euler method with 
integration step h. The total energy E can be calculated by (5) 
as well as its change after each iteration from N to N+1 by (6): 

 
1
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N N N

N
N N

p p hKq
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

 (5) 
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

  (6) 

From (6), the total energy at time t is 

 
0

2 /(1 ) ,t h
t

KE h E
M

   (7) 

where  

 0t t N h N h     . (8) 

Obviously, a physical system, e.g. the linearized SMIB system, 
has both K and M be positive. This means that the total energy 
manifested from the simulation result will increase rapidly with 
the Euler method. Thus, the simulation result presents negative 

damping even if the true system has no damping.  

Next, if the R-K 4 method is adopted, the following steps in 
(9) can be taken to obtain formulae on the change of energy at 
each iteration in (10) and the energy as a function of time in 
(11). 
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2

6 3 /
04

8(1 ( )) .
576

t h
t

Kh ME h K E
M

 
   (11) 

Unlike the Euler method, the R-K 4 method for K > 0 and M > 
0 has a critical time step hc by which simulation can preserve 
the total energy: 

 8 ,c
Mh
K

  (12) 

where 

 1 1( ) 0.N c N NE h E E      (13) 

If h < hc, the total energy will decrease at every iteration, which 
exhibits positive damping even if the system itself has no 
damping; if h > hc, the total energy will increase rapidly to 
present negative damping and finally cause a numerically 
unstable simulation.  

The largest one-step change of energy can be found as the 
stationary point with respect to h. Namely, 

 
3 5

21
4 ( 6 ) 0.

72
N Nd E K h E Kh M

dh M
 
     (14) 

The corresponding step size is hm which can cause the largest 
energy change at one integration step. 

 6
m

Mh
K

  (15) 

B. Considering a large disturbance 

Subjecting to a large disturbance, a nonlinear SMIB model 
is required and used here. The classical SMIB model about p 
and q in the Hamiltonian system form is: 
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max sin

,

m Dp P P q K p
pq

M

  






 (16) 

where  

  0

2

.

HM

q
p Mq











 



 (17)  

where Pm is the mechanical power, Pmax is the steady-state limit 
of Pm, KD is the damping parameter, is the nominal 
frequency and H is the inertia. Now assume that there is no 
damping in the system which means KD = 0. The total energy 
can be calculated by 

 max
1 (cos cos ) ( ).

2
T

s m sE p p P q P q
M

       (18) 

where s is the angle of the equilibrium. 

Consider a 3rd order approximation of (16) by Taylor 
Expansion at the equilibrium. There is  

 

2 3 4( )
2 6

,

s c
c

K K
p K q q q q

pq
M



         


 


  (19) 

where 
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sin .
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s
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q q q q

K P
K P P







    

   



  

 (20) 

For a small neighborhood of the equilibrium, such an 
approximation is acceptable and can largely simplify the 
formulae on energy changes for the SMIB system. Thus, the 
total energy is approximated by 

 

max

3
max

3
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2
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2
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2
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  (21) 

       

    Use (19)-(21) to calculate the change of the total system 
energy at each iteration with the R-K 4 method: 

2
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 
    

     
 

    
 

  
    

 

   (22) 

The critical value of the integration time step can be solved 
from (22) by letting EN+1 = 0. Note that the resulting critical 
value varies with the system state and time. To obtain these 
critical values, an approach is to first use a very small 
integration time step to generate accurately enough simulation 
and then to solve critical values by (22) along with the 
simulation result. Then, similar conclusions on the critical value 
for the harmonic oscillator can be drawn: if the actual 
integration time step adopted at a step is less than the critical 
value at that state, the energy will decrease; otherwise, energy 
will increase. When the disturbance is small, the resulting 
critical value matches the critical time step with the harmonic 
oscillator.   

C. Numerical damping of a simulated system  
This section adopts the concept of “numerical damping” for 

the SMIB system as well as the dominant mode of a multi-
machine power system. It is defined as the fake portion of the 
damping observed from numerical simulation if the integration 
methods cannot preserve the total energy.  

Assume h < hc for the SMIB system. First, consider the 
corresponding harmonic oscillator with damping. The energy 
will change with time as described by 

 
22 2

0

2( ) ( )
( ) ( )
2 2 2 2

e e
N N NN NNp Kq p K q

E D E D
M M

        (23) 

where 

 N=t/h 

 ln
2

l

2
6 3

n
2

4

8(1 ( ))
576

.

D te h
N N

D te h
N N

Kh MD h K
M

p e p

q e q





 
 





 

 (24) 

In (24), pe and qe are equivalent state variables on the dominant 
oscillation that consider the decreasing energy, and elnD/2h is the 
damping used to illustrate the change of energy caused by the 
R-K4 method. When the harmonic oscillator system is stable, 
there is D < 1, the error will increase as an exponential function 
with respect to time t. Since the kinetic energy and potential 
energy will decrease equally, total additional damping will be 
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added to p(t) and q(t) in the same ratio. For a harmonic 
oscillator system, there is only one mode, whose natural 
frequency is 

 .n
K
M

   (25) 

Then, from (23)-(25) the numerical damping, which is the 
portion of fake damping due to numerical simulation, is given 
by 

 
ln ln 100%.
2 2e

n

D D M
h h K




       (26) 

Assume the calculated damping ratio by, e.g., Prony’s method, 
from the simulated waveform to be m. Then, the correction 
damping ratio is  

 .c m e     (27)  

For simulations of the SMIB system subject to a small 
disturbance, equations (11), (12), (26), and (27) can be applied 
to estimate the numerical damping and find the true damping 
from simulation results.  

III. CASE STUDIES 

A. R-K 4 Method on an SMIB system  

Assume 𝛿s = 0.524 rad, M = 0.1 s2/ rad, Pmax = 1 p. u., Pm = 
0.5 p. u. Consider a post-disturbance initial state that causes a 
rotor angle deviation of 0.2 rad. There is no damping in the 
system. Since this disturbance is not large, higher-order terms 
in (22) can be ignored to obtain hc = 0.9611 s. Three different 
time step values are chosen to simulate the system and the 
energies are compared to the total energy calculated by (21) in 
Fig.1. From Fig.1, the total energy will decrease if h < hc, 
increase if h > hc, or oscillate around a constant value if h is 
around hc. 

 

 

Fig. 1. Total energy for SMIB system 

Then, the SMIB system with damping is considered. 
Assume KD = 0.25 p. u. in (16). The true damping ratio from 
the linearized model of (16) is 4.2476% at a natural frequency 
of 0.4684 Hz. For the same disturbance, the R-K 4 method is 
used to simulate and Prony’s method is applied to estimate the 
damping ratio. With different step sizes, corresponding 
numerical damping ratios, i.e. the portions of fake damping 

added by numerical integration, are shown in Fig. 2 and Table 
I. 

 

Fig. 2. Numerical damping for the SMIB system 

 From Fig.2 the numerical damping is highest at hm=0.8324 
s by (15). If a relatively accurate damping ratio is desired when 
the simulation is numerically stable, the step size should be  less 
than hm, and the corresponding damping ratios estimated by 
Prony’s method on simulation results are shown in Table I 
below.  

TABLE I.  COMPARISON OF DAMPING RATIO OF SMIB SYSTEM 

 

Two error indices in Table I are defined by: 

 1

2 ,
m t

c t

  

  

  


 
 (28) 

where t = 4.2476% is the true damping, 𝜀1 represents the 
absolute error of Prony’s method, 𝜀2 represents the absolute 
error of correction damping in (27). The second column 
represents damping ratios estimated by Prony’s method; the 
third column gives values of 𝜀1; the fourth column represents 
numerical damping ratios calculated by (26), and the last 
column gives values of 𝜀2. From Table I,  it is obvious that 
considering the numerical damping ratio can reduce errors 
introduced by the R-K 4 method, which also verifies inevitable 
damping errors occur when a  large step size is adopted for 
measurement based mehods.  

Step 
size(s) 

Damping Ratio of SMIB System  

Prony 
Analysis 

(%) 

Error 𝜀1 

of Prony 
Analysis 

(%) 

Numerical 
Damping 

(%) 

Error 𝜀2 due to 
numerical 
damping 

(%) 

0.1 4.2374 0.0102 0.0015 0.0117 

0.2 4.2796 0.0320 0.0469 0.0149 

0.3 4.5211 0.2735 0.3372 0.0637 

0.4 5.4524 1.2048 1.3179 0.1131 

0.5 7.8856 3.6380 3.6864 0.0484 

0.6 13.0510 8.8034 8.4067 0.3967 

0.7 22.5863 18.3387 16.7444 1.5943 

0.8 35.5024 31.2548 31.7761 0.5213 
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B. R-K 4 Method on a two-area system 

Kundur’s two-area system from [12] as shown in Fig.3 is 
used to test how the system energy can change by the R-K 4 
method with the integration time step, which will influence the 
observed damping of the dominant mode. For instance, a 
decreasing energy caused by the R-K 4 method presents extra 
positive damping.  

 
Fig. 3. Two-area system 

Consider a temporary 3-phase fault on bus 7 that is cleared 
after 2 cycles without any tripping line. The relative rotor 
angles are shown in Fig.4 with a dominant inter-area mode 
around 0.5 Hz. 

 

Fig. 4. Relative rotor angles  
 

 
Fig. 5. Damping ratios of the slow mode  

 

For this disturbance, the M and K values of an SIMB 
equivalent of the two-area system can be found by either model 
reduction or a modal decomposition based approach. Then, 
apply (12) to determine the critical time step. Generator 1 is 

chosen as the reference generator and the simulation result of 
generator 2 is used for analysis. Several step sizes are adopted 
to simulate the system. The damping ratios of the inter-area 
mode are estimated by Prony’s method as shown in Fig.5.  
There is a critical time step hc at 0.4041 s calculated by (12). It 
can be verified by Fig.5. When the time step is close to hc, the 
change of energy is almost 0. If the time step is less than 0.3 s, 
the damping ratio will be close to the actual value of 4.1726%.  

IV. CONCLUSION AND FUTURE WORK 
This paper has studied energy preservability with two 

explicit R-K methods for time-domain simulation. It is 
discovered that the Euler method is unable to preserve the 
system energy while the R-K 4 method has a critical time step 
enabling energy-preserving simulations. The concept of 
numerical damping has been adopted to evaluate the fake 
portion of damping told from simulation results if energy is not 
preserved. The derived formulae and conclusions have been 
validated on the SMIB system and also tested on a two-area 
system. Future work will extend the presented approach to 
multi-machine power systems and apply the formulae to 
improve accuracy of power system simulation. 
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