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Abstract—Traditional dynamic security assessment faces 

challenges as power systems are experiencing a transformation to 

inverter-based-resource (IBR) dominated systems, for which 

electromagnetic transient (EMT) dynamics have to be considered. 

However, EMT simulation is time-consuming especially for a large 

power grid because the mathematical model based on detailed 

component modeling is highly stiff and needs to be integrated at 

tiny time steps due to numerical stability. This paper proposes a 

heterogeneous multiscale method (HMM) to address the simulation 

of a power system considering EMT dynamics as a multiscale 

problem. The method aims to accurately simulate the macroscopic 

dynamics of the system even when EMT dynamics are dominating. 

By force estimation using a kernel function, the proposed method 

automatically generates a macro model on the fly of simulation 

based on the micro model of EMT dynamics. It can flexibly switch 

between the micro- and macro-models to capture important EMT 

dynamics during some time intervals while skipping over other 

time intervals of less interest to achieve a superior simulation speed. 

The method is illustrated by a case study on a two-machine EMT 

model to demonstrate its potential for power system simulation.   
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I. INTRODUCTION  

In recent decades, time-domain simulation has been widely 
applied to dynamic security assessment and transient stability 
analysis for power systems [1]. However, with increasing 
Inverter-Based-Resources (IBRs) dominating the system, 
power system dynamics become more complex to include both 
electromechanical dynamics and electromagnetic transient 
(EMT) dynamics, and thus positive-sequence phasor-based 
models are not adequate to provide accurate results. Indeed, 
several subsynchronous oscillations observed in recent years 
can hardly be captured by phasor models [2]. EMT simulation 
tools such as the Electromagnetic Transients Program (EMTP) 
can accurately simulate a three-phase power network model 
even with distributed transmission line parameters, and become 
more popular in analyses of fast dynamics for the desired 
accuracy. However, EMT simulations are extremely slow 
because the instantaneous voltage and current waveforms 
around the fundamental 60-Hz need to be computed at a step 

size of milliseconds or shorter for numerical stability even if the 
system is approaching a steady-state condition. Several 
straightforward approaches were proposed to speed up EMT 
analysis by a transformation of the system model and responses 
into frequency domain such as the Hilbert Transform and Fast 
Fourier Transform [3],[4]. Such methods have limitations such 
as the aliasing effect with fast dynamics to accumulate their 
errors, and it is inconvenient to analyze the error bound. Thus, 
two questions arise for a power system having IBRs: How to 
define fast and slow dynamics of different timescales? How to 
efficiently simulate a multi-timescale power system having both 
fast and slow dynamics?  

There have been works on co-simulations of both EMT and 
phasor models by interfacing two simulation tools[5-7]. 
However, very few papers have concerned the methodology for 
multiscale simulations of power systems considering EMT 
dynamics. This paper aims to fill the gap and develops a 
Heterogenous Multiscale Method (HMM) for simulations of 
power systems having two timescales. The HMM [8-10] 
provides a general methodology to efficiently simulate a stiff 
system, which relies on the coupling of different time scales, i.e., 
a micro-model can supply the necessary information for the 
macro-model. The method is based on time-averaging 
techniques from the perturbation theory [11] for analyzing stiff 
dynamical systems. The proposed novel HMM solver could 
flexibly and efficiently exchange information and switch 
between micro- and macro-models of different timescales with 
errors bounded. The main advantage of the proposed approach 
is that the effective force is estimated through sophisticatedly 
defined smooth kernels. By using a convolution operator with 
kernels, the macro-model can capture the dynamics of the power 
system correctly.  

The rest of this paper is organized as follows. Section II 
derives and studies the formulae on the HMM for a stiff system. 
Then, the HMM solver is introduced, and a kernel function is 
implemented to capture the effective force. Section III 
introduce the EMT model of a two-machine system under 0DQ 
global reference frame. Section IV presents case studies on the 
EMT model of a two-machine system. Conclusions are 
summarized in section V. 

II. HETEROGENEOUS MULTISCALE METHOD  

This section explains the motivation and basic idea of the 
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proposed method using a stiff dynamical system. The influence 
of a smooth kernel is studied on such a system. Then, the HMM 
solver is proposed and the algorithm for multiscale power 
system simulation is built. 

A. Introduction of a stiff system 

A stiff ordinary differential system can be defined by: 

 ( , )
 =

dx
f x t

dt
 (1) 

where xɛ(t): ℝ+ ↦ ℝd is the state variable, d is the dimension of 
the system. Subscript ɛ indicates that the system has a faster 
timescale characterized by a small positive number ɛ. From [10], 

the eigenvalues of the system should satisfy, k0 ≥ 1 such that: 
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where from C1 to C4 are all constants and λ𝜀(j) denotes the jth 
eigenvalues of the Jacobian of the vector field in (1), also j1 ≤ 
k0 and j2 > k0. Typically, a stiff system is illustrated roughly by 
eigenvalues in different scales, (2) can explain such a property 
precisely.  

Consider an example with two dimensions (x1, x2): 
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where f1 and f2 are all smooth functions, x2 is a slow variable 
compared with x1 when ɛ > 0 is small enough. Such a stiff 
system can be approximated by Differential Algebraic 
Equations (DAE) by applying perturbation theory. Indeed, 
when ɛ converges to 0, the system becomes: 
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Hence the fast dynamics in the first equation converge to a slow 
manifold. In the power system area, the DAE model for 
transient stability comes from the convergence of power flow 
equations.  

In addressing issues for multiscale dynamics in power 
system simulations, now suppose that there exists an effective 
macro model behind the fast dynamics:  

 ( , )=
d

X f X t
dt

  (5) 

where X (t): ℝ+ ↦ ℝq represents the slow variables derived from 
(1) as ɛ converges to 0. Here we emphasize the dimension of 
slow variables to be different from the micro system (1). Notice 
that different from the simple example (4), the macro model is 
generated automatically on the fly of simulation and hence may 
not have a closed form, so we only need it to exist. For power 
system simulation, we are interested in some slow dynamics 
such as the envelope of fast-oscillating state variables, the 
energy of the system, or relative angles, they may usually have 
such forms. Then, based on (5), the effective force at t can be 
defined by [10]: 
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It is almost impossible to solve (6) explicitly for a nontrivial 
problem, so a strategy is to use time averaging techniques to 
evaluate the effective force from a micro model, i.e. original 
system (1). Indeed, by selecting a proper kernel, a convolution 
operation with kernel function can achieve this goal. Similar to 

[10], we consider a kernel function K(t) , ( )p q I  which 

means: K(t) ( ) q

cC with supp(K) = I and 
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For normalization, Kη(t) is defined to denote the kernel function 
after scaling, i.e.,  
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Based on the above definitions, the estimation of an 
effective force by the convolution using a kernel function Kη

p,q 
with η = η(ɛ) → 0 as ɛ → 0 converges[8], i.e. 

 
, , ( )  as 0    =  =  + → →p q p qf K f K f g f .  (8) 

where gɛ(t) represents fast dynamics that need to be averaged in 
the macro model (5). For detailed proof, please check Theorem 
2.3 and 2.7 for the dissipative and oscillatory cases [10]. 

Remark 1. For a stiff system (1), we define a macro model (5) 
of interest, the effective force (6) of (5) usually cannot have a 
closed form. However, by time averaging using a kernel 
function, (6) can be obtained from the micro-model.    

B. Algorithm of the heterogeneous multiscale method 

Based on the knowledge introduced in the previous section, 
a frame can be built systematically to address this EMT model. 
Suppose the simulation is started at tn, the simulation algorithm 
is presented below: 

Step 1 Estimation of macro effective force: 

a) Reconstruct information from the macro-model by 
( )

0 = nx RX  

b) Solve micro-model (EMT) based on the micro solver:  

0( , ) with ( )
  = =n

dx
f x t x t x

dt
 for   ,  +n nt t t  

c) Apply time averaging to the micro-model (EMT): 

i) Using (8) to estimate the local macro force, i.e. 

( ),( ) ( )  +   = +  =  + p q

n n n nf t t f f t t K f t t  

ii) Obtain macro information from the micro-model 

(EMT) 
* ( ( ))= + nX Q x t t  

Step 2 Evolve the macro dynamics 
1+nX for the next step 1+nt : 

( 1) ( ) *+

= =

= + + 
n n

n k

k k n

k m k m

X A X H B f CX  

Step 3 Let ( 1)

0

+= nx RX , then repeat the whole process. 

where R and Q are reconstruction and compression operators 
transforming between micro- and macro-state variables, e.g., Q 
= ||∙||L2 represents the general energy form of micro-state 
variables. η denotes the simulation interval of the micro-model 
at tn, X(n) denotes slow variables at step n. Also, Δt determines 
the force evaluation position as tn+Δt. In ii) in step 1, all vector 



fields which have the form like f(x(tn+ Δt)) are written in short 
as f(tn+ Δt). In step 2), a general form of a multistep method is 
considered to illustrate the process of the macro simulation, 
where Ak, Bk, and C in ℝq×q represent coefficient matrices and 
H is the step size for macro simulation. This algorithm provides 
a general frame to capture the dynamics we are interested in 
power system simulation, i.e., the evaluation of macro 
dynamics is achieved on the fly of simulation for the micro-
model. In this paper, we consider R, and Q as identity operators, 
which means the slow dynamics of state variables in (1) are 
what we prefer to observe during the simulation. By repeating 
this process, the effective force (6) can be predicted from the 
micro model (1) instead of our definition such as the positive-
sequence phasor-based model which may cause errors in some 
cases as pointed out in [2]. The basic logic is that most fast 
dynamics fɛ are not cores of our study, by running the micro-
model (1) with a time interval η, enough information is obtained 
to support the simulation for the macro-model (5) by a 
convolution with a proper kernel function in (8), which depends 
on the problems we address.  

Remark 2. Indeed, to assess the overall stability and dynamic 
performance of the system, we do not focus on state variables 
of fast dynamics since they either decay quickly right after a 
switch or enter steady-state periods such as instantaneous 
voltage and current waveforms around the fundamental 60-Hz. 
Some methods shift such dynamics to a low frequency [3][4].   

C. The influence of a kernel function in HMM 

In the previous section, a robust and adaptive HMM 
algorithm is introduced, and the role of a kernel function is 
analyzed in this section. By local averaging against a kernel 
function, fast dynamics can be averaged but long-term 
dynamics can be preserved.  

In general, a convolution operator with a kernel is a linear 
continuous functional for a function. The kernel applied in this 
paper is unimodal and isotropic, which means the kernel has 
radial symmetry and should be invariant under the rotation 
operation. Such a kernel function could always be represented 
as a kind of metric, indeed, there exists a smooth function h 

( ) q

cC such that  

 ( , ) ( )= −K t s h t s .   

With the abuse of notation, kernel K is written as: 

 ( , ) ( )= −K t s K t s  (9) 

as the kernel only depends on the difference. Then, the integral 
of a function f(s) against the kernel becomes convolution 
naturally 

 ( ) ( ) ( ) ( )( ) = − = f t K t s f s ds K f t , (10) 

if we identify K(t-s) in (9) as a single variable function, then (9) 

has the same form defined in (7). The convolution operation in 

(10) evaluates the function fɛ at tn+Δt, and ||tn+Δt −t|| represents 

the distance between two points, then the kernel can be 

recognized as a weighted function used to average fɛ depending 

on the chosen metric, i.e., the feature we want to keep. The 

redundant component gɛ can be filtered during this process.  

III. DYNAMIC MODEL UNDER 0DQ REFERENCE FRAME   

In this section, we adopt a common practice to establish the 
dynamic model into 0DQ frame reference which can transform 
balanced sinusoidal dynamics into nearly constant dynamics.  

A. Model of  a round rotor synchronous generator  

Consider a 6th-order EMT model: 
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where , r, r, H, D, pm, and pe denote the rotor angle (rad), 
rotor angle speed (rad/s), rotor angle speed deviation(rad/s), 
inertial constant (s2/rad), damping constant (p.u.), mechanical 

power (p.u.), and electrical power (p.u.), respectively; 0 is the 
nominal frequency of the system, i.e., 60 Hz; λfd, λ1d, λ1q, and λ2q 
denote flux linkages (p.u.) of filed winding, damper winding at 
d-axis, the first damper winding at q-axis, the second damper 
winding at q-axis, respectively; rfd, r1d, r1q, and r2q are resistances 
(p.u.) of those four windings; Lfdl, L1dl, L1ql, and L2ql are leakage 
inductances (p.u.) of those four windings; efd is the field voltage 
(p.u.); iabc and vabc are three phase terminal currents and voltages 
interfacing with the grid side; Rs is the corresponding stator 
resistance. We also consider a 1st-order governor and exciter for 
each generator in the case study.    

B. Model of a three-phase RLC branch under 0DQ reference 
frame 

A two-machine system shown in Fig.1 is introduced to 
explain the model of the RLC branch. The dynamic model can 
be transformed into a global 0DQ reference frame as below: 

 

11

1 1 3 1

12

2 2 4 2

14

2 4 2 4 4

17

3 4 7 7

13

1 7 3

14

2

( ) ( )           

( ) ( )          

( ) ( )     

( ) ( )

( ) ( )

(

T DQ

T DQ

DQ DQ

LineDQ LineDQ

LineDQ

LineDQ

di
L v v P i

dt
di

L v v P i
dt
di

L v R i P i
dt
di

L v v R i P i
dt
dv

C i i P v
dt

dv
C i i

dt











−

−

−

−

−

−

= − +

= − +

= − +

= − − +

= − +

= − 4 7 4) ( )    i P v+ +

 (12) 

where i1, i2, i4, and i7 denote currents through G1, G2, load 2 and 



T-line, v3, v4 are voltages at capacitors in T-line. All elements 
in the network are transformed by Park transformation: 
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And Park matrix adopted in this paper is: 
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In (12) all currents, voltages as well as resistors, inductors, 
and capacitors are under the 0DQ reference frame. Each 
element is diagonalized by Park matrix, LT1 and LT2 denote 
inductors of two transformers, L2 and R2 are used to model the 
load level, and LLine, RLine, CLine represent parameters of the 
transmission line. Notice that load 1 will be tripped in the case 
study, and also has the same form as load 2, so the model of 
load 1 isn’t listed in (12).  

1Load 2Load

T Line−

2G
1G

BR

1L 1R 2R 2L
1i

1Bus Bus 
 

Fig. 1. A two-machine system 

Note that in (12), all state variables have three components, 
e.g., i1 = [i10, i1D, i1Q]T, which are in the global 0DQ reference 
instead of the local 0dq reference for each generator or IBR. 
Without loss of generality, we could choose θ and ωr from the 
local 0dq frame of G1 as the choice is arbitrary [12]. Then, all 
quantities in the network are rotating together with G1. The 
transformation between different frames can be achieved by a 
rotation matrix, see details in [12]. 

IV. CASE STUDIES 

A. HMM on the two-machine system  

The performance of HMM is demonstrated in this section. 
Consider a fault that happens at t=3s which leads BR to open in 
Fig.1, i.e., load 1 is permanently tripped at t=3s, and HMM is 
adopted to simulate the dynamics. The whole process can be 
divided into three periods: steady state period T1 before 
disturbance, T2 the period during fault and part of post fault 
period in which micro dynamics dominate the system, T3 the 
period in which long-term dynamics are important. We claim 
that the strategy adaptively switches between different models 
during the simulation. Then, during T3, only long-term dynamic 
is preferred, to speed up the simulation, HMM is applied in this 
process since there are still some fast dynamics left during this 
period. 

We set our numerical simulation for a two-machine system 
as follows. As discussed in the algorithm of HMM, H is used to 
denote the macroscopic step size, h denotes the step size of 
micro simulation, η denotes the kernel support size, and the 
time window of micro simulation is W = 2η. In this paper, the 

Gaussian kernel is applied to handle the discrete convolution 
with the micro vector field fɛ. The Gaussian kernel has the form: 
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Identify t-s as a single variable, then (13) has the same form as 
(7). Note that the choice of σ depends on the micro window W. 
It would be a good strategy to take σ = η/3 as K taking t-s out 
of this domain is near 0. Pick the middle point as the evaluation 
point which can provide high accuracy due to the symmetric 

kernel (13), i.e., Δt = η.   

 In this case, the micro model is EMT model introduced at 
III. We don’t define macro model explicitly. The HMM-FE-rk4 
solver is applied in this case, which means RK4 is adopted 
during the micro simulation and Forward Euler (FE) scheme is 
used for macro simulation. Detailed information is shown 

below. In this case, set T2 as 3s to 3.1s, as the fast dynamics is 
damped very fast, typically the high-frequency component in 
voltage, which is much shorter than 0.1 seconds, also we want 
to observe the fast dynamics for some state variables during T2. 

TABLE I.  PARAMETERS OF HMM SOLVER 

* I is the identical operator 

Then, voltages v5, v6, and currents i4, under 0DQ frame are 
shown below, RK4 scheme using 5 μs time step is adopted as 
the benchmark for the whole simulation. 

 From Fig.2, we can conclude that simulation with HMM 
can capture the long-term dynamics accurately with a much 
larger macroscopic time step H. Furthermore, another group of 
currents {i1, i2, i7} behaves stronger oscillations due to the loss 
of the load, and they are shown in Fig.3, Fig.4, and Fig.5. The 
corresponding envelope is also compared with the original 
EMT which aims to show the potential of the HMM. All long-
term dynamics of currents can be accurately simulated with less 
computational burden.  

 

Fig. 2. Results of i4, v5, and v6 during T3. 

σ Δt(s) H(s) h(μs) 

0.0044 0.011 0.012 5 

W(s) η(s) T1(s) T2(s) 

0.022 0.011 [0,3) [3,3.1] 

T3(s) R&Q Micro Solver Macro Solver 

(3.1,8] I* RK4 FE 



  

Fig. 3. Results of i1d, i1q, and the envelope of i1 under abc reference frame.  

From Fig. 3 it can be seen the dense part of HMM is the 
micro simulation which is adopted to evaluate the effective 
force for the macro simulation. The simulation is stable and 
effective for {i1, i2, i7}. Also, there are several implicit versions 
of HMM, e.g. one can apply the implicit RK4 scheme to the 
micro simulation. In this case study, T3 is not in a steady state 
as the fault is permanent. HMM can track the envelope during 
the transient period of the network device.  

 

Fig. 4. Results of i2d, i2q, and the envelope of i2 under abc reference frame. 

 

Fig. 5. Results of i7d, i7q, and the envelope of i7 under abc reference frame.   

The simulation is conducted in Matlab on a PC with Intel(R) 

Core (TM) i7-10700 CPU@2.90GHz. Regarding time 

performance, for such an 8-second simulation, the ground truth 

EMT simulation shown before is used to compare with the 

HMM-based simulation. HMM-based simulation is finished 

with 80.931170s and RK4 one is 121.932214s which implies 

the power of HMM, a 33.63% speedup is achieved as a much 

larger time step is adopted during the macro simulations. 

V. CONCLUSION AND FUTURE WORK 

This is the first attempt to apply the HMM to power system 
simulation to achieve a balance between micro and macro 
dynamic in EMT simulation. The benefit of HMM 
demonstrated in the case study is that it provides a general 
adaptive flexible frame to simulate a stiff system, time 
performance is improved as well as accuracy is preserved. This 
paper opens a door for the future study of HMM in power 
system simulation, e.g., whether an adaptive step change 
scheme can be applied to increase the time performance; if a 
better kernel function could be found to further average the 
long-term dynamics. 
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