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Background
* The extreme weather (e.g. storms, etc.) has became the main cause of power outages.

« After storms passed through, utilities need to dispatch crews to repair the damaged
devices as fast as possible.

 However, many distribution grids are not equipped with sensors that can precisely
pinpoint the faults locations.

* Besides, optimally dispatching crews to restore the system is a stochastic nonlinear
problem which is hard to solve.

Fig. 1. Distribution system repair.

Deep reinforcement learning based distribution grid restoration strategy after storms
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The utility crew routing problem is modeled as a MDP (Markov T
Decision Process) problem, and we recursively solve the problem : g
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Fig. 3. Utility vehicle routing in a distribution system
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Fig. 5. The convergence process of the AlphaZero-UVR algorithm under

different number of simulations per move. Fig. 7. The modified IEEE 123-node distribution system.
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Fig. 6. Power line fault probabilities during the repairing procedure. Fig. 8. The performance of the proposed algorithm and the comparing

methods on the modified IEEE 123-node test system.

v Conclusion: The proposed AlphaZero-UVR algorithm performs better than traditional methods and MCTS-
random (Monte Carlo tree search) algorithms
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