

Forced Oscillation Initiation and Damping Location Within the TVA Area

2023 CURENT Industry Conference Apr. 2023

Melanie Bennett¹, Yilu Liu^{1,2}, Christopher Burge³ ¹University of Tennessee, Knoxville ²Oak Ridge National Laboratory ³Tennessee Valley Authority

Critical Location Forced Oscillation

- Objective:
 - Identify critical generators for initiating forced oscillations
- Technical Approach:
 - $_{\circ}$ Inject 200 MW_{pp} oscillations via governor
 - Individually study all TVA machines greater than 200 MW
 - $_{\circ}$ Oscillations modes from 0.25 Hz to 1.4 Hz
- Results:
 - Observe largest bus frequency magnitude resulting from machine oscillation
 - Peak oscillations occurred within TVA more frequently
 - 1.0 Hz mode generally produced larger oscillations

Battery Storage Damping Feasibility Study

•

- Objective:
 - Assess damping effectiveness by battery energy storage system
- Technical Approach:
 - Battery injects anti-phase oscillation of 200 MW
 - Case 1: Combined-cycle plant
 - Case 2: Two nuclear plants

- Results:
 - Battery phase angle impacts damping
 - Oscillations reduced but effectiveness varies on a case-by-case basis

Acknowledgements

This work was supported by

