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Abstract Modern power grids are fast-changing and thus 
require real-time monitoring and online stability assessment. With 
the rapid development of machine learning (ML) techniques, 
using data-driven models to provide fast and accurate estimations 
of power system stability marginal information, such as frequency 
nadir for frequency stability and critical clearing time (CCT) for 
transient stability, have become possible. However, despite the 
numerous research on ML-based methods for frequency nadir 
and CCT prediction, there is limited work on the impact of 
different network topology changes. Furthermore, most previous 
studies only focused on small or synthetic systems, and there is a 
lack of research on actual large power system models.  In this 
paper, the above issues are addressed by studying the actual U.S. 
Western Electricity Coordinating Council (WECC) system model 
with more than 20,000 buses. Massive simulations are conducted 
in PowerWorld Simulator to study the impact of various topology 
change scenarios on both frequency stability and transient 
stability. System operating information is extracted from the 
success dispatch cases of various network topologies to generate a 
comprehensive dataset for ML-based models. Two ML methods, 
random forest (RF) and multilayer perceptron (MLP) neural 
network, are trained and tested for both frequency nadir 
prediction and CCT prediction. Test results have proven the 
models are capable of online stability assessment for large power 
networks such as the WECC system with sufficient accuracy. 

Keywords Power system stability assessment, frequency nadir, 
critical clearing time, network topology change, machine learning. 

I. INTRODUCTION  

Power system stability assessment has great significance in 
power system operation and control because it can provide 
insight in severe faults. 
Traditionally, power system stability is assessed by using the 
time-domain simulation method [1] [2] or the direct method [3] 
[4]. However, both methods are not suitable for large-scale 
power system analysis or fast online stability assessment of 
modern fast-changing power grids. 

 The recent development in data-driven methods has shown 
potential in addressing the shortcomings of traditional methods. 
Many researches have been done in both frequency nadir 
prediction for system frequency stability and CCT prediction for 
system transient stability. To list a few examples, a 
comprehensive study has been done to compare several ML-

based methods on predicting frequency nadir, and both gradient 
boosting and XGBoost have shown promising accuracy [5]. 
Another study using convolutional long short-term memory 
network also shown high accuracy in frequency nadir prediction 
[6]. A stacking model based on random forest and XGBoost is 
proposed for CCT prediction [7]. Ensemble extreme learning 
machine regression model technique has been applied on CCT 
prediction in [8]. 
tested and validated on various small power systems. Despite 
this, the existing literature on power system stability assessment 
for large actual power grid is very sparse. One recent research 
work using large actual WECC system has proposed two ML 
models for both frequency nadir and CCT prediction. By 
comparing the prediction time, the ML-based methods are 
capable of making faster-than-real-time prediction of online 
transient stability assessment for large-scale actual power 
system [9]. However, the impact of network topology on 
frequency nadir and CCT remains underexplored in the 
literature. An XGBoost based model is proposed in [10], which 
shows good generalization capability in case of noise 
interference and changed topology. Transfer learning technique  
has also been applied to transient stability assessment to 
accommodate network topology change impacts on prediction 
accuracy [11]. A graph convolutional neural network based 
model considering topology changes in small system has been 
proposed in [12]. One recent study has examined the impact of 
both N-1 and N-2 topologies and implemented large ML models 
using 13,000 dispatches for accurate CCT prediction [13]. 
Alternatively, there is still lack of research  considering 
comprehensive topology changes impact on both frequency 
stability and transient stability in actual large-scale power 
systems. 

In order to tackle the issue of limited research on power 
system stability assessment tools that can account for topology 
changes in large-scale power systems, this paper uses the actual 
WECC 20,000+ bus model to conduct comprehensive case 
studies on the impacts of different network topology on system 
stability. Two  ML-based models for both frequency nadir and 
CCT prediction that take into account of various topology 
changes are also implemented and tested on the actual WECC 
20,000+ bus system.  
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II. IMPACT OF NETWORK TOPOLOGY CHANGES ON WECC
SYSTEMS TRANSIENT STABILITY

A. Introduction of Case System

In this paper, 228 fine-tuned actual dispatch cases from the
WECC 20,000+ bus full system model are used to study the 
impact of topology change on system stability. These real-world 
dispatch cases are converted based on the EMS data of the US 
WECC system and lack of robustness. Therefore, additional 
tuning and case selection are applied prior to the topology 
change studies in order to exclude the unstable cases. After 
selection, 138 dispatch cases are used to conduct further 
frequency stability study and 69 dispatch cases are used for 
further transient stability study. Frequency nadir and CCT are 
selected as the stability index for system frequency stability and 
transient stability respectively. Various topology change 
scenarios are simulated in PowerWorld Simulator to analyze the 
impact of different network topologies on system stability. 

B. Topology Change Impact on Frequency Stability

A total 138 out of 228 dynamic dispatch cases were found 
suitable for the frequency stability study. After carefully 
examining the topology data of the 20,000+ bus system, three 
345kV level tie-lines and three large generators in Arizona and 
NEW Mexico area, shown in Fig.1, were selected for generating 
various topology changes. Massive dynamic simulations under
selected disturbances, large generator drop event that lose two 
1.37GW generators, have been ran in PowerWorld Simulator in 
batches on both original WECC system with no topology change 
and the modified WECC system of six different topology
change scenarios. Frequency nadir and system operating 
information such as generator active power and inertia were
extracted from each case for later ML dataset construction. The 
detailed topology change scenarios and the number of succeed 
dispatch case can be found in Table 1 below.

Fig. 1. Selected tie-lines and generators for study the impact of topology 
change on frequency nadir.

TABLE I. TOPOLOGY SCENARIOS OF THE FREQUENCY STABILITY

Topology Scenarios
Outage Tie-lines or 

Generators
Success Dispatch 

Cases
Original case No topology change 128
Trip 1 tie-line Line A 129
Trip 2 tie-lines Line B + C 129
Trip 3 tie-lines Line A + B + C 128
Trip 1 genertaor Gen A 129
Trip 2 genertaors Gen A + B 132
Trip 3 genertaors Gen A + B + C 133

The comparisons of frequency nadir before and after 
topology changes are shown in Fig. 2. After tripping one or more 
tie-lines, the frequency nadir does not change much. This is due 
to tripping tie-lines does not lose any generators, and thus total 
generation MW showed no obvious change resulted in no 
obvious change in frequency nadir. After tripping generators, 
generation MW decreases, and a lower frequency nadir can be 
observed as more generators were lost.

Fig. 2. Network topology change impact on frequency nadir.

C. Topology Change Impact on Transient Stability

A total 69 out of 228 dynamic dispatch cases were found 
suitable for the transient stability study. After carefully 
examining the topology data of the 20,000+ bus system, six 
500kV tie-lines in the Northwest area of the WECC system have 
been selected to perform N-1 to N-6 topology change study. 
Similar to frequency stability study, massive dynamic
simulations with branch fault contingencies have been done in 
PowerWorld Simulator on both original WECC system and the 
modified WECC system after N-1 to N-6 network topology 
scenarios. The operating information and CCT values of the 
success dispatch cases were extracted for later ML dataset 
construction. The detailed topology changes scenarios and the 
number of succeed dispatch case can be found in Table 2 below.

TABLE II. TOPOLOGY SCENARIOS OF THE ANGLE STABILITY

Topology Scenarios Outage Tie-lines
Success 

Dispatch Cases
Original case No topology change 69

N-1 Trip 1 500kV tie-line 66

N-2 Trip 2 500kV tie-lines 65

N-3 Trip 3 500kV tie-lines 62

N-4 Trip 4 500kV tie-lines 64

N-5 Trip 5 500kV tie-lines 69

N-6 Trip 6 500kV tie-lines 69
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The comparison of CCT before and after topology changes 
are shown in Fig.3. Considering the full WECC model is a large-
scale system that contains over 20,000 buses, tripping one or two 
500kV tie-lines had no significant impact on the CCT values. 
However, when three or more 500kV tie-lines were tripped, a 
decrease in CCT values can be observed. Note that the system 
already became unstable after tripping more than three 500kV 
tie-lines., Therefore; tripping five or six 500kV tie-lines do not 
have significant impact on the CCT values compared to tripping 
three or four 500kV tie-lines.

Fig. 3. Network topology change impact on CCT.

III. ML-BASED METHODS FOR TRANSIENT STABILITY 

ASSESSMENT CONSIDERING TOPOLOGY CHANGES

In this paper, two machine learning models, i.e. a random 
forest (RF) model and a multilayer perceptron (MLP) neural 
network model are used are both frequency nadir and CCT 
prediction. The flowchart of the ML-based power system 
stability assessment process is shown in Fig. 4 below. 

Fig. 4. Overall structure of the proposed ML-based power system stability 
assessment.

A. Machine Learning Models for Frequency Nadir Prediction

To generate the machine learning dataset for frequency 
stability assessment, we conducted time-domain simulations of 
the full WECC system model to obtain frequency stability
margin information. The frequency nadir was computed by 
identifying the minimum frequency value in the median 
frequency response across all buses. A total of 908 successful 
dispatch cases were obtained, including both no topology
change and six different network topology scenarios. For each 
successful dispatch case, we extracted the active power output 
of the system's 4270 generators as input features for the machine 
learning models. The frequency nadir was used as the prediction 
target for the ML models. The data are mixed and randomly split 
into 80% training set and 20% testing set, the split is stratified 
by cases.

When training the RF model, 5-fold cross validation is used. 
The optimal parameters selected after fine-tuning are 
Max_depth = 9 and n_estimator = 50. The prediction and actual 
frequency nadir comparison is shown in Fig. 5. We randomly 
selected 75 test cases (sorted by frequency nadir value from low 
to high) to plot for better visualization purpose. The relative 
error of the same 75 cases are shown in Fig 6 below.

For the MLP model, the data was normalized to 0-1 range 
referencing the training split. When training the MLP model, 2 
hidden layers is used and the learning rate is 1E-4. The 
prediction and actual frequency nadir comparison of the MLP 
model is shown in Fig. 7 and only 75 randomly selected test 
cases are plotted. The relative error of the same 75 test cases is 
shown in Fig. 8.

According to Fig. 6 and Fig. 8, the majority of the relative 
error for both models is within 0.004%, which demonstrates 
very good nadir prediction performance.

Fig. 5. RF model frequency nadir prediction on randomly selected 75 test 
cases sorted by nadir from low to high..

Fig. 6. RF model frequency nadir prediction relative error on the randomly 
selected 75 test cases sort by nadir from low to high.
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Fig. 7. MLP model frequency nadir prediction on randomly selected 75 test 
cases sorted by nadir from low to high.

Fig. 8. MLP model frequency nadir prediction relative error on the randomly 
selected 75 test cases sort by nadir from low to high.

The frequency nadir prediction performance matrix for both 
models is summarized in Table 3 below. Both RF and MLP
models are capable of making accurate frequency nadir 
predictions. The majority of the absolute prediction errors are 
within 0.001Hz. The MLP model performs better than the 
random forest model by 24.23% when comparing the prediction 
root-mean-square-error (RMSE).

TABLE III. ML-BASED METHODS FREQUENCY STABILITY ASSESSMENT 
PERFORMANCE

Performance Matrix
ML Models

Random Forest MLP

Absolute 
Error

Mean 0.00055 0.00043

Max 0.00852 0.00743

Min 7.1E-15 6.7E-7

90th Percentile 0.00107 0.00105

RMSE 0.001077 0.000816

B. Machine Learning Models for CCT Prediction

The machine learning dataset for transient stability 
assessment is also obtained by conducting time-domain 
simulations of the full WECC system model. The CCT value of 
each success dispatch case is obtained by varying the fault 
clearing time until the transient instability occurs. A total of 464
successful dispatch cases were obtained, including both no 
topology change and six different network topology scenarios. 
For each successful dispatch case, there are 1405 generators 
with both active power and inertia information. We extract this 
information and used as input features for the machine learning 
models. The CCT value of each dispatch case was used as the 
prediction target for the ML models. The data are mixed and 
randomly split into 85% training set and 15% testing set due to 
the insufficient number of success cases, the split is stratified by 
cases.

When training the RF model, 5-fold cross validation was
used. The optimal parameters selected after fine-tuning are 
Max_depth = 3 and n_estimator = 100. The prediction and actual
CCT comparison of the total 73 test cases is shown in Fig. 9. 
The prediction relative error of the test cases are shown in Fig. 
10 below.

For the MLP model, the data was again normalized to 0-1 
range referencing the training split. When training the MLP 
model, 5 hidden layers is used and the learning rate is 1E-3. The 
MLP model prediction and actual CCT comparison is shown in 
Fig. 11. The prediction relative error is shown in Fig. 12.

Fig. 9. RF model CCT prediction sorted by CCT from low to high.

Fig. 10. RF model CCT prediction relative error sorted by CCT from low to 
high.

Fig. 11. MLP model CCT prediction sorted by CCT from low to high.

Fig. 12. MLP model CCT prediction relative error sorted by CCT from low to 
high.
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According to Fig. 10 and Fig. 12, the majority of the CCT 
relative prediction error for both models is within 6%, which 
indicates acceptable prediction accuracy. The CCT prediction 
performance matrix for both models is summarized in Table 4 
below. Both RF and MLP models are capable of making fast 
CCT predictions with acceptable accuracy. The majority of the 
absolute prediction errors are within 0.017s for both models. 
Both methods demonstrate comparable performance without a 
clear advantage of one over the other. 

TABLE IV.  ML-BASED METHODS ANGLE STABILITY ASSESSMENT 
PERFORMANCE 

Performance Matrix 
ML Models 

Random Forest MLP 

Absolute 
Error 

Mean 0.00896 0.00959 

Max 0.02526 0.02759 

Min 0.00043 0.00026 

90th Percentile 0.01646 0.01765 

RMSE 0.01098 0.01154 

IV. CONCLUSION 

This paper presents a case study that explores the effects of 
different topology changes on system frequency stability and 
transient stability of the actual 20,000+ bus WECC system 
model. The frequency nadir and the CCT are used as the stability 
indices for the system's frequency and transient stability, 
respectively. To assess the impact of each network topology on 
these stability indices, we conducted time-domain simulations 
and provide a detailed analysis of the results. Then, the system 
operation information are extracted from successful dispatch 
cases, and employed as input features for two machine learning 
models: random forest and MLP. The models were trained and 
evaluated using frequency nadir and CCT as prediction targets 
to assess frequency stability and transient stability, respectively. 
The test results indicate that both ML models have demonstrated 
strong performance in predicting frequency nadir. However, the 
MLP model has a clear advantage over the random forest model 
in terms of prediction accuracy by comparing the RMSE 
performance matrix. As for CCT prediction, although the 
accuracy is not as high as that of frequency nadir prediction, both 
absolute error and relative error remain within an acceptable 
range. This less accuracy is due to the limited dynamic dispatch 
cases were found suitable for conduct transient stability study. 
To further improve the accuracy of CCT prediction, future 
research should aim at examining a larger number of actual 
dispatch cases in the WECC full model and implementing more 
advanced machine learning models. Additionally, incorporating 
additional features such system topology network, voltage and 
load information could also be considered. 
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