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Abstract—Aggregation of electric vehicles (EVs) is a promising
technique for providing secondary frequency regulation (SFR)
in highly renewable energy-penetrated power systems. Equipped
with energy storage devices, EV aggregation can provide reliable
SFR. However, the main challenge is to guarantee reliable intra-
interval SFR capacities and inter-interval delivery following
the automatic generation control (AGC) signal. Furthermore,
aggregated EV SFR provision will be further complicated by
the EV charging time anxiety because SFR provision might
extend EV’s charging time. This paper proposes a deliverable EV
SFR provision with a charging-time-constrained control strategy.
First, a charging-time-constrained EV aggregation is proposed
to address the uncertainty of EV capacity based on the state-
space model considering the charging-time restriction of EV
owners. Second, a real-time economic dispatch and time domain
simulation (RTED-TDS) cosimulation framework is proposed to
verify financial results and the dynamic performance of the EV
SFR provision. Last, the proposed charging time-constrained EV
aggregation is validated on the IEEE 39-bus system. The results
demonstrate that with charging time-constrained EV aggregation,
the dynamic performance of the system can be improved with a
marginal increase in total cost. More importantly, the charging
time constraint can be respected in the proposed SFR provision
of the EV aggregation.

Index Terms—Secondary frequency regulation, electric vehicle
aggregation, charging time anxiety, state-space modeling, cosim-
ulation

NOMENCLATURE

Indices and Sets

) Set of all buses

975 Set of all EV aggregators
Qa Set of all generators

9% Set of all branches

Qr Set of all RTED intervals

Parameters and Variables
ADY /ADP Demanded RegUp/Dn capacity at time ¢

pg / pgD Ramp-up/-down limit (MW/min) of generator g
Cet /cgt Price ($/MWh) of EV aggregator g for

RegUp/Dn at time ¢
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Cg,t Bid price ($/MWh) of generator g at time ¢

/el Price ($/MWh) of generator g for RegUp/Dn at
time ¢

D, Load demand (MW) of bus b

Pg‘c? Scheduled power generation (MW) of generator
g at time ¢

Py Line flow through branch &

RU,/RP,  RegUp/Dn capacity (MW) of EV aggregator e
at time ¢

RU,/RP,  RegUp/Dn capacity (MW) of generator g at
time ¢

I. INTRODUCTION

ITH the increasing integration of variable renewable
Wenergy generation involving solar power and wind
power [1], [2], the stress confronted with system frequency
regulation increases substantially. Secondary frequency regu-
lation (SFR) is an essential grid service that maintains the
power balance and regulates system frequency to its set value.
To mitigate the fluctuation of the system frequency caused
by variations in variable load and power generation, the
SFR requirements increase significantly. However, given the
gradual retirement of conventional generators, the controllable
resources in the generation mix are continuously decreasing
[3], [4]. Therefore, finding more alternative energy resources
that can provide reliable SFR for the future power system with
high-frequency regulation requirements is essential. Regarding
the SFR, the ancillary market is generally co-optimized with
the energy market [5], [6] to maintain the intra-interval power
balance. Once the procurement of SFR is settled down, the
automatic generation control (AGC) units are responsible for
delivering the intra-interval regulating power. Variable gener-
ation providing SFR brings the gap between the intra-interval
procurement and the inter-interval delivery. Distributionally
robust chance-constrained modeling is applied to obtain intra-
interval SFR capacities and provide deliverable inter-interval
SFR services [7].

Equipped with energy storage devices, Electric Vehicles
(EV) can exchange power with the power grid in two di-
rections to provide vehicle-to-grid services [8]-[10]. Since
the capacity of a single EV is limited, the aggregation of a
large population of EVs was developed to provide meaningful
frequency service [11]-[14]. The challenge of modeling EV
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aggregators is the randomness caused by numerous EVs’
travel behaviors and heterogeneous parameters. An optimal
dispatching control for EVs participating in LFC is developed
to secure charging demand and enable dispatch level EV
control [15]. EVs can be classified based on their SOC level
and thus can be described as a Markov process and modeled as
a state space transition model based on Markov theory [16],
[17]. In addition, the communication burden is significantly
reduced because the control signal is designed for groups
rather than for every EV. However, the studies mentioned
above focused on the continuous manner of AGC control
while ignoring the SFR procurement and delivery process
[71, [18], [19]. Additionally, charging anxiety, or named range
anxiety [20], is a barrier that prevents EVs from participating
in the SFR program because the energy consumed by the SFR
will increase charging time. The problem of time anxiety is
presented and alleviated by considering the patterns of EV
behaviors [21]. In addition, the aggregated anxiety concept
is proposed and a model-free deep reinforcement learning
method is developed to optimize the charging schedule [22].
However, the methods discussed above are toward a single EV.
They are not applicable in EVs that provide SFR because the
relatively significant AGC power signal requires the aggre-
gation of numerous EVs. However, the AGC action manner
requires a near-real-time control. In summary, the challenges
for EV providing SFR can be summarized as follows:

1) It should be addressed that EV randomness involves not
only the procurement stage but also the delivery stage.

2) The increased charging time should be constrained to
secure the preference of the EV owners.

3) The comprehensive evaluation of the SFR provision
of EVs involves an economic perspective and dynamic
performance.

Based on motivation, this paper proposes an increased
charging time-constrained and deliverable SFR strategy from
EVs. EV aggregation is modeled based on state-space mod-
eling to effectively estimate the available SFR capacity in
the procurement stage and reliably deliver the AGC signal
in the real-time operation stage. Through the RTED-TDS
cosimulation, the proposed strategy is validated to provide
deliverable SFR service while the increased charging time is
constrained to secure the EV owner’s preference. The major
contributions of this paper are summarized below:

1) The problem of EVs participating in the RTED to
provide SFR is decoupled into dispatch modeling and
EV aggregator modeling, where the procured capacity
from EVs can be reliably delivered in the real-time
operation stage to support current frequency regulation
manner.

2) The increased charging time caused by the SFR services
is translated into an action counter and is constrained by
the EV owner’s tolerance.

3) A hybrid OPF structure is proposed in the RTED-TDS
cosimulation for frequency regulation studies, where the
transition from dispatch to dynamic is secured and the
modeling complexity is reduced. With the hybrid OPF
structure, the proposed RTED-TDS cosimulation allows

fast prototyping of dispatch-dynamic cosimulation stud-
ies.

4) EV providing deliverable SFR is verified using the pro-
posed RTED-TDS cosimulation. The results show that
the dynamic system performance is improved with the
charging time constraints, and the EV owners’ tolerance
of increased charging time is obeyed.

The rest of this paper is organized as follows. Section
Il discusses the charging time-constrained EV aggregator
modeling; Section III presents the problem formulation of EV
providing SFR in the RTED and the framework of RTED-TDS
cosimulation; Section IV verifies the proposed charging time-
constrained EV control strategy using the proposed RTED-
TDS cosimulation on the IEEE 39-bus system; and Section V
concludes this paper.

II. CHARGING TIME CONSTRAINED EV AGGREGATOR
MODELING

This section introduces the EV charging time-constrained
aggregator model, including the estimation of SFR capacities
in charge time and EV control for real-time AGC power
delivery.

A. Overview State Space Model Based EV Aggregator

The uncertainties of EVs come from heterogeneous param-
eters and random travel behaviors. Various EV models provide
heterogeneous parameters, including capacity (), charging
efficiency 7., and discharging efficiency 74. An EV must be
plugged in if the SOC level reaches a low level after a trip,
which consists of random traveling behaviors involving arrival
time t,, departure time ¢, initial SOC level SOC;, and the
SOC level required SOC}.

A model-based EV aggregator based on the state space [23]
is proposed to address the uncertainties of EV for frequency
service. The proposed model applied the Markov state tran-
sition method to predict and control the aggregator status of
the EV. Then, the power signals for EVs are translated to
probabilities and acted by each single EV [17], [23], [24].
Here, we will overview the philosophy of the state space
model-based EV aggregator.

An EV in a charging station can have three service actions,
i.e., charging, idle, and discharging. Regulation services can
be achieved by switching EVs between different statuses.
Additionally, these EVs are categorized based on two criteria:
SOC levels and charging behavior. SOC levels are grouped
into N, categories, while charging behaviors are described by
three statuses: charging, idle, and discharging. Consequently,
an individual EV can be assigned a status based on its SOC
level and charging behavior. Additionally, all EVs can be
collectively depicted using a 3N x 1 vector, where each
element corresponds to a status partition. After a while, the EV
will transition to a new state. Further, the status of a population
of EVs can be described by a 3N x 1 vector that each element
represents the proportion of EVs in a situation out of total EVs.
Therefore, an EV population can be described with the state
transition probability, as shown in Eqn (1).

{ x(k+1) = A (x(k) + Bu(k) + Cv(k)) 0
y(k) = D (x(k) + Bu(k) + Cv(k))
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where vectors x(k) and x(k + 1) are the 3N, x 1 current
and next state vectors corresponding to the proportion of each
SOC, respectively, and y(k) is the total output power of the
EV aggregator.

The matrix A is the state transition matrix obtained by the
estimation method or the analytical method [16]. Matrices
B and C are the constant matrices corresponding to the
control signals of RegUp and RegDn, as given in Eq. (2)-
(3). The vectors u and v are the input vectors Ng x 1 that
corresponds to the proportion of each SOC. A positive element
in u means that the EV aggregator will switch part of the
EVs to the corresponding charging state. On the contrary,
the negative element means that the EV changes from idle
to charging. Similarly, a positive element in v means that
part or all EVs in the corresponding state will be switched
from idle to charging. In contrast, the negative element means
changing from discharging to idle. The calculation of u and
v is discussed in the next subsection.

B=[-Tixn.,Lixn.,01xn.]T 2)
C:[leNs?_leNs7II><NJT (3)

The matrix D is the constant matrix corresponding to the
output power as given in Eqn (4).

D:PaveNe[_]-lXNS;OlXNSa11><NS] (4)

where N, is the online EV numbers and P, is the estimated
average charging power of the EVs. N, and P,, can be
obtained from the EV charging station operation history data,
and the computation error can be bounded by periodically
updating [16].

Further, the upper and lower bound of the EV aggregator
power can be described below:

% = PyeNe - 13><Ns X(k)
Yk) = —PyeNe - 13><N3 X(k)

®)

With state space modeling, control signal computation, and
communication are significantly simplified because the EV
aggregator deals with a state vector of a large population of
EVs rather than every single EV.

B. Charging Time Constrained SFR Capacities Estimation

Charging time anxiety of EV has drawn interest [20] [21]
[22], the increased charging time incurred by the AGC re-
sponse can impede electric vehicle owners participating in SFR
program. Therefore, the charging time should be considered
to follow the EV owners’ tolerance to the increased charging
time.

When a large electric vehicle population is plugged in,
there can be a gap between the energy demanded and the
charging energy during the charging period. As a result, the
gap allows electric vehicles to provide frequency regulation
services without increasing charging time. For a single EV,
Eqgn (6) describes the energy available for frequency support
that secures the EV owner’s charging anxiety, where t, is the
EV owner’s tolerance of increased charging time.

E, = (ty —ts + twl) - P. — (SOCy — SOC;) - Q  (6)

TABLE I
AGC POWER FROM SINGLE EV

P-™\_Status
Charging Idle  Discharging
S0C
SOC < S0Cy 0 Py 2Py
SOC > S0Cy —Py 0 Py

Given the condition that the departure time ¢ is challenging
to access in practice, Eqn (6) can be further revised for the
EV aggregator application,

E:z = (tstay,ave + ttol) * Payve — (SOCd - SOCZ) : Qave (7

where tg,y ave 1S the average time of EV staying connected in
the charging station, and @, is the average capacity. Similar
to Pyye [16], tsay,ave and @Qave can also be obtained from the
operation data of the EV charging station, as shown in Eqns
(8) - (9), where fi(t.) and fo(Q.) are the probability density
functions of ty., and @, respectively; t.min and f.max are
the minimum and maximum stay time, respectively; Qmi, and
Qmax are the minimum and maximum capacity, respectively.

'tc, max
tstay, ave — / t(: : ft (t(') dtc (8)
tstay‘min
Qmax
Qave = o Qc . fQ (Qc) dQc 9

Before integrating the charging time constraints, the as-
sumptions for EV in this study are listed below:

e An EV is set to charging status when it connects to the

charger.

e The EV owner will input the charge time tolerance t,

into the charger.

o The EV owner will input the SOC level of demand SOCy

into the charger.

e The EV will be switched to idle status if it has been

charged to the demand SOC level.

¢ The EV will remain unchanged if switch failure happened

due to communication error or chip malfunction.

Since the time length of the AGC interval is fixed, the
response power P, from a single EV in an AGC interval is
listed in Table I. In it, P,, = Piye-Thgc is the unit power of AGC
response from one single EV during an AGC interval, and
Tige is the AGC cycle time. EVs that have not been charged
to SOC, are supposed to be in charging status; thus, the EVs
in idle and discharging status are considered to be providing
AGC response power. Similarly, EVs charged to SOC, are
supposed to be idle; thus, the EVs in charging and discharging
status are considered to provide AGC response power.

Eqgn (10) translates the available energy E; into N,, an
action number limit of AGC response. Here, the variable N,
is an integer obtained through the floor operation. Regarding
the application of superchargers, which introduce a variety
of charging rates, the proposed model can be extended to
encompass this as discussed in [17]. For an individual EV,
N, is initially set to zero upon its arrival at the charging
station. The counter is updated after every AGC interval by
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N, = N, + P./P,, and once the maximum action number
is reached, the EV will be out of SFR service. Similarly,
an EV will also exit the SFR service if it attains a full
charge. This strategy ensures that the EV does not remain
in the service, guarding against the risk of overcharging and
maintaining optimal battery health. Note that Eqns (7) and
(10) use estimated t4;, Pyye, and Q4. to calculate the action
limiter of an individual EV, ensuring the charging demand.
In practice, an EV charger could access more accurate data,
which would improve the estimations.

M= |l

P, ave * Tagc

In this way, the charging time constraints can be realized by
installing a counter locally in each charger, and thus there is
no extra communication burden between the charging center
and the charger. In addition, the increased charging time can
be estimated by the counter as tjctr = N, /m

Then, the number of online EVs N, in Eqns (4)-(5) should
be replaced with V., which represents the number of in-service
EVs.

Further, the charging time-constrained SFR capacities can
be estimated by Eqn (11):

RU =5 — y(k)
RY =y(k) —yu)

Where RieU and @ are the estimated RegUp and RegDn
capacities from the EV aggregator, respectively.

(10)

(1)

C. Real-time AGC Power Delivery Control

EV aggregator participates in the SFR in two stages: dis-
patch in RTED and real-time delivery in real-time. By Eqn
(11), the power grid control center can procure the regulation
capacities from EV as discussed in Section III-A. Then, in the
real-time operation, the EV aggregator delivers the assigned
signal. The real-time AGC power delivery is illustrated below:

1) The power signals for each status of the EV are computed
as follows:

If P ev -Prt Z 0:

ry = min(P;, RY)/(Puye - N¢)

uj = min(ry — ZhN;j—i-l Lh — Zi]l§‘+1+N5 Th, T;)
ry = max(P; — RY, 0)/(Pye - N¢)

vj = min(r, — Zg;j+1($h+NS +up), 4N, +uj)

(12)
Else if P, — P < 0:
Ty = maz([jiv FE)/(PHVC : N(')
vj = ma:z:(rv + Zi;ll (xh—1+2N3)7 *$j+2Ns) (13)

ry = min(P; — RE; 0)/(Pave - Ne)

Uj = max(ru - Zi:l Up — Zi;ll Up, _xj-‘rNs)

Where j = [1,..., Ns], Pe is the AGC power assigned to the
EV aggregator, Py is the AGC power from the EV aggregator
that can be summarized from all the response power P, from
every single EV as listed in the Table I,  is the single element
in vector X, x4+, is the element in vector x that represents

for EVs in SOC level h at idle status, 2,1, is the element in
vector x that represents for EVs in SOC level j at idle status.

2) The power signals for each EV status are translated into
probabilities as follows:

If Poy — Py > 0:
uS»j = m?n(uj/xj’ 1) (14)
vs,j = min(v; /(T N, +uj), 1)
Else if Py, — P < O:
vs,j = min(—v; /(x;4on, +uj), 1) (15)
us,j = min(—u;j/TjiN, — vj, 1)

Where x4 n, is the element in vector x that represents for EVs
in SOC level j at idle status, and x;,on, is the element in
vector x that represents for EVs in SOC level j at discharging
status.

In Eqns (12) and (14), RegUp power is delivered by EVs
that will be switched from idle to discharging and by EVs that
will be switched from charging to idle. RegUp power delivered
by EVs switching from idle to discharging is associated with
Ty, uj, and u, ;. These represent the total assigned power,
the power assigned to EVs in SOC level j, and the switch
probability assigned to EVs in SOC level j, respectively.
RegUp power delivered by EVs switching from charging to
idle is linked to r,, v;, and v, ;. These denote the total
assigned power, the power assigned to EVs in SOC level j,
and the switch probability assigned to EVs in SOC level j,
respectively.

In Eqns (13) and (15), RegDn power is delivered by
EVs that will be switched from discharging to idle and by
EVs that will be switched from idle to charging. RegDn
power delivered by EVs switching from discharging to idle
is associated with 7, v;, and v, ;. These represent the total
assigned power, the power assigned to EVs in SOC level j,
and the switch probability assigned to EVs in SOC level j,
respectively. RegDn power delivered by EVs switching from
idle to charging is linked to 7, u;, and u, ;. These denote the
total assigned power, the power assigned to EVs in SOC level
7, and the switch probability assigned to EVs in SOC level j,
respectively.

3) The probabilities signals from 2) are supplemented with
direction signals as the following:

=1, Ph—FP:+>0

L 2 Po<o 9
it

uS,Ns+1 = ’US,NS+1 = _17 PEV

4) The signals from Eqns (14)-(16) are broadcast to all
the EVs, and each single EV will generate a number n
locally, where n ~ U(0,1). The action is then determined
by comparing the number n with the corresponding status p:

{ switch, n > p a7

stay, n <p

The overall workflow of the EV aggregator is summarized
in the Algorithm 1, where N € Ny, T4 is the cycle time of
RTED and 7T, is the update cycle time of EV aggregator.
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Algorithm 1 EV Aggregator Control

1: Initialize EV aggregator

2: for t in Ty

3: ift=N Ty

4 Estimate SFR capacities with Eqn (11);
5: ift=N T,

6: Record x and update A;

7 ift =N T

8 Compute signals with Eqns (12)-(16);
9: Run Monte Carlo simulation;

10: Switch EVs with Eqn (17);

11: Estimate x and y with Eqn (1);

III. PROCUREMENT AND DELIVERY OF SFR FROM EV

This section introduces the procurement of EV SFR capacity in
the RTED and the RTED-TDS cosimulation framework used
to verify the proposed strategy.

A. Procurement of EV SFR in the RTED

The procurement of EV SFR (R{, and R?,) in the RTED
requires the EV aggregator to provide available SFR capacities
RY and RP. Given the EV aggregator addresses the EV
uncertainties, the RTED can be modeled as below, where the
variables are explained in the Nomenclature:

win 3 (Z (o (P) 4 VRV, 4 P D)

teQr \i€Qa

(18)
+ Z (cgtht + cgtht)> Vg € Qg,Ve € Qg
i€Qp
s.1. U U U
AD{ = ) Ry, + Y R, (19)
geQa eeQp
ADP = > RP + Y RP (20)
g€eQa eeQp
S P — Y D=0 1)
beQp beQp
Pt + RY, < Py, Vg € Qg Vt € Qr (22)
Py < P — R, Vg € Qg,Vt € Qp (23)
RY, < RU Ve € Qp,Vt € Qr (24)
RP, < RDP Ve € Qp,Vt € Qr (25)
Pyy— Pya1 < py - ALVi € Qg VE€Qr  (26)
Pyio1— Py < pl - At Vie Qg VteQr  (27)
~Pr < Y GSF, (P — Dy) < Py, Vk € Q. (28)

9€Qa

The underline and overline of the variables represent the
minimum and maximum, respectively. Superscripts U and D
represent regulation up and down, respectively. Eqn (18) is the
objective function; Eqns (19) - (20) represent the SFR equality
constraints; Eqn (21) represents the power balance; Eqns (22) -

(23) are the minimum/maximum output of conventional units;
Eqns (24) - (25) is the minimum/maximum SFR output of the
EV aggregator, where the Rgt and Rgt are estimated from
the EV aggregator as described in the previous subsection
II-C; Eqns (26) - (27) are the ramping up/down limits of
conventional units; Eqn (28) represents the line thermal limits,
where m is the thermal limit of line k& and GSF is
generation shift factor of bus g to line k. In the RTED
r;il%deling, the decision variables are Pg“? Rg,w Rgt, Rgt,

e,t*

Once the SFR capacities are settled down, the participation
factor of each AGC unit is determined by the ratio of its SFR
capacity out of the total demanded SFR capacity, as shown in
Eqns (29)-(30):

U, =RU,/JAD{ Vg€ QaUQE,VteQr  (29)
D, =R, JADP Vg € Qe UQp,Vt€Qr (30

where the SY, and 82, are each AGC unit's RegUp and
RegDn participation factors, respectively.

B. RTED-TDS cosimulation Framework

RTED-TDS cosimulation is proposed to simulate the close-
loop AGC control on the area level. The complete frequency
regulation study includes the dispatch results and the dynamic
process. However, there can be a gap when applying the RTED
solution to the TDS. In the RTED-related problem formulation,
DCOPF or the linearized ACOPF can be used, while the
ACOFPF is used to initialize the TDS. The gap results from
DCOPF or linearized ACOPF will result the slack generator
will compensate for the unbalanced power. Thus, scheduling
results can be broken and TDS can fail. Therefore, to reduce
the modeling complexity and guarantee a smooth transition
from dispatch to dynamic, a DC-AC hybrid OPF structure is
proposed. The design of DCOPF and ACOPF hybrid solutions
allows the extensibility to other dispatch formulations, such
as unit commitment problems. In this design, DCOPF enables
rapid prototyping of dispatch problems, while ACOPF secures
the consistency and initialization of the TDS.

Figure 1 illustrates the proposed framework of RTED-TDS
cosimulation. The framework coordinates four entities: EV
Aggregator is the proposed charging time-constrained EV ag-
gregator, DCOPF stands for the DCOPF-based dispatch simu-
lator, ACOPF represents the ACOPF-based dispatch simulator,
and TDS is the dynamic simulator. The dispatch simulator
involves the DCOPF, and ACOPF implemented with gurobipy
and pandapower [25], respectively. The dynamic simulation is
powered by the open-source simulation engine LTB ANDES
[26], [27]. To capture the EV dynamics, the data is federated
between the EV aggregator and the dynamic model [28]. The
four entities are grouped into two modules, i.e., dispatch and
dynamic, and the two modules are iterated to perform the
cosimulation.

The dispatch module contains three steps. First, the available
SFR capacities from the EV aggregator and other AGC units
are reported to the control center. Second, the procurement of
SFR (RY,, RP,, RY Rgt ) is solved with DCOPF-based

g,t> “hg,t> Tle,t
RTED model as described in the section III-A. However,
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Fig. 1. Framework of RTED-TDS cosimulation

the setting points Pgsff solved from DCOPF can result in a
mismatch in the TDS. Third, therefore, setting points Pgsf? are
re-solved from ACOPF to secure the initialization of TDS and
the accuracy of the dispatch results. The SFR capacities and
the ramping limits from the first step are reserved by adjusting
the generator limits, as shown in Eqns (31)-(32).

P, zmin(E—R;{t,E—pg - At) 31
P, = max(Py + RY, P, +pY - At) (32)

Once the dispatch results are settled, the dynamic module
will run the TDS by iterating ANDES and the EV aggregator.
The iteration involves two steps. First, the TDS will run to set
end time to,0 and generate the AGC signal PA7C of the EV
aggregator. Second, the EV aggregator responds to the AGC
signal while running to the same end time £ o. Then the two
steps are iterated till the end of the first dynamic period.

After the dynamic simulation, the dynamic results will be
reported to the control center as the start point in the following
dispatch period.

The secondary frequency regulation on the area level is im-
plemented in the area-level area control error (ACE) model and
the plant-level automatic generation control (AGC) model. The
area-level ACE represents the system power imbalance and is
defined by North America Electric Reliability Corporation [1].
With the ignorance of interchange (tie line) metering error, it

can be calculated with Eqn (33), where [ is the system bias
factor (MW/0.1Hz), f and f,, are the measured and nominal
frequency (Hz), respectively, P and Pj“h are the actual tie
line power (MW) and the scheduled tie line power (MW),
respectively.

ACE = 108(f — fa) + (Py — ;™) (33)

Taking ACE as the input signal, the plant-level AGC model
will generate auxiliary power signal P,, as illustrated in
Figure 2, where K, and K; are the gain and integral constants
of the PI controller, respectively.

In the power system operation, the SFR mileage calculation
must be necessary. The actual SFR mileages of EV aggregator
are similar to conventional generators, as given in Eqn (34):
Nyge—1

D | Pageringet i — Pageivgerical

fage=1

Phile,ieg = 34)
where Py, 1S the mileage of EV aggregator of the icqth
RTED interval, Py, i, means the AGC power of EV
aggregator of the i,.th AGC interval in the i.qth RTED
interval.

Algorithm 2 RTED-TDS cosimulation
1: Initialize EV aggregator, DCOPF, ACOPF, TDS
2: for t in Ty
3: ift=N- Ty
EV aggregator: estimate SFR with Eqn (11);
DCOPF: update info from dynamic;
solve RTED with Eqns (18)-(30);
ACOPF: resolve with Eqns (31)-(32);
TDS: assign schedule results from ACOPF;
ift =N T,
10: TDS: assign AGC power;
11: EV Aggregator: run with Algorithm 1;
12: TDS: federate power from EV aggregator;
13: run TDS;
14: compute ACE with Eqn (33);

R AN AN

As illustrated in the Algorithm 2, lines 4-8 are the dispatch
module, and lines 10-14 are the dynamic module. The detailed
data federation is listed below:

1) line 4: the available SFR capacities from EV are com-
puted with Eqn (11) and updated into Eqns (25)-(24) of
TDS;

2) line 6: the previous setting points P;fl of Eqns (22)-
(23) of TDS are replaced with actual output power from
TDS results;

3) line 8 the setting points calculated from ACOPF are
updated into corresponding generation units in TDS;

4) line 12: the output power of the EV Aggregator is
updated into the EV dynamic model in TDS.

IV. CASE STUDIES

For verification and demonstration, this section carries out
case studies using the proposed RTED-TDS cosimulation. The
IEEE 39-bus system is modified to demonstrate the potential
of EVs participating in SFR with the proposed charging time-
constrained aggregator modeling.
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A. Simulation Settings

All studies are performed on a laptop with Apple MI
processors and 16 GB RAM. The environment of the EV
aggregation algorithm and the RTED-TDS cosimulation is
deployed in Python 3.9 with ANDES 1.7.

The EV parameters are randomly generated according to a
given distribution [16], and detailed EV profiles are simulated
with the EV aggregator. In the EV aggregator, Monte Carlo
simulation is conducted by updating EV connection status and
SOC at each time step, as outlined in Algorithm 1. The EV
aggregator parameters are set as follows: step size T, = 1s,
SOC intervals Ny = 20, and update cycle T, = 40s. The
step size of the cosimulation is set as 7. = 1s. The heaviest
charging load occurs around 6 PM [23], and the average SOC
level is relatively lower than in other time intervals. Thus, the
scenario at 6 PM is chosen to demonstrate the secured charging
demand and the potential of aggregated EVs participating in
SFR provision with charging time constraints.

The load profile is synthesized from PJM load data [29], as
depicted in Figure 3.

B. EV Aggregator Modeling Validation

In the TDS, there are two approaches to modeling EV
dynamics. First, we can model every EV to secure the
simulation accuracy, marked as M1. However, this detailed
modeling in M1 can bring a heavy computation burden when
the EV number is significant. To address this issue, the second
approach is to aggregate the large number of EVs into one
single dynamic EV device, with the output power set to track
the total output power of all EVs, marked as M2. Note that,
with the aggregated M2, although some details, such as each
EV’s SOC and output power, are excluded in the TDS, these
detailed individual EV operational parameters are calculated
in the separated EV aggregator model.

(a) EV Aggregator output power under contingency (b) System COI frequency under contingency
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Fig. 4. Benchmark of EV modeling (a) Total power under normal operation;
(b) System frequency under normal operation; (c) Total power under generator
tripping; (d) System frequency under generator tripping.

TABLE 11
IEEE 39-BUS SYSTEM GENERATION PARAMETERS

Unit Cost ($/MW) Pmax  Pmin Ramp .
b < SFR (MW) (MW) (MW/5 min)

Gl 0.0140 20 500 O 10.4 4.16 52

G2 0.0200 20 380 O 6.46 2.58 40

G3 0.0194 20 42 0 7.25 29 43.33

G4 0.0200 20 380 O 6.52 2.6 36.67

G5 0.0255 20 295 O 5.08 2.0 26.67

G6 0.0210 20 400 O 6.87 2.74 35

G7 0.2300 20 350 O 5.8 2.32 30

G8 0.2220 20 330 O 5.64 2.256 30

G9 0.0150 20 490 O 8.65 3.64 50

G10 0.1400 20 500 O 11 44 66.67

IEEE 39-bus system with EV dynamic devices is used to
validate the accuracy of the M2 model. In the benchmark test,
M1 includes all the 1,000 EV dynamic devices in the TDS,
while M2 only contains one.

The 50s simulation under a generation trip contingency
consumes 3.400s using M1 versus 2.237s using M2. The 1200s
simulation under regular operation consumes 895s using M1
versus 172s using M2. Figure 4 shows the system’s dynamic
responses. From the above results, it can be seen that M2
significantly accelerates the simulation while reserving EV
information with high accuracy. Therefore, M2 is used in this
study to investigate the aggregated EV providing SFR.

C. IEEE 39-Bus System

As visualized using LTB AGVis [30] in Figure 5, IEEE 39-
bus system is modified to include an EV aggregator with a
total of 50,000 EVs.
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Fig. 5. IEEE 39-bus system topology visualized by LTB AGVis

(a) Case2 AGC response (b) Case3 AGC response
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Fig. 6. EV aggregator response

The generation parameters [31] are listed in Table II. Refer-
enced from ISO-NE, the mileage price is set as 0.99$/MWh,
and the penalty of extra increased charging time is set as 4$/h.
Three cases listed below are tested to demonstrate the charging
time-constrained EV aggregator modeling:

e Casel: EV not providing SFR

e Case2: EV providing SFR without charging time con-

straints

e Case3: EV providing SFR with charging time constraints

The simulation results are shown and interpreted in the
following subsections.

D. EV Aggregator Results

Figure 6 illustrates the EV Aggregator response of Case2
and Case3. It can be seen that the AGC power assigned to the
EV aggregator is delivered accurately. Noted that Casel is not
included in Figure 6 because Casel EV aggregator has zero
control and response signal. This is also the case for Figure 7
and 9.

Although the recent developments in 5G technology could
offer a practical solution for the proposed EV aggregator [32],
real-world scenarios encompass practical conditions, including
communication errors or chip malfunctions, which can lead to
switch failures in EV chargers. Consequently, these factors can
compromise the regulation performance of the EV aggregator.
Figure 7 presents the AGC responses of the EV aggregator
under varying failure rates. The figure portrays both the AGC
responses of the EV aggregator with and without the increased
charging time control. Here, the control signal in Case 2 is
used as EV aggregator input signal for all three scenarios. The
black curve represents the input signal, while the blue, green,

8
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Fig. 8. 95% confidence interval of ended SOC by a group of initial SOC

and orange curves correspond to 0%, 2%, and 5% failure rate,
respectively. From the figure, it can be seen that the AGC
responses for different failure rates closely follow the control
signal and exhibit similar patterns. The robustness comes from
that the large number of EVs contributes to upholding overall
performance at an acceptable level, even in cases where a
limited number of individual EVs fail to act as expected.
Figure 8 depicts the 95% confidence interval of the EV
SOC curve by four groups of different initial levels of SOC. In
Figure 8 (a) and (b), EVs that have been charged to the desired
SOC level are still charged in Case2 and Case3, whereas in
Casel, they remained unchanged. RegDn power is withdrawn
from switching idle EVs to charging, where EVs already
charged to demanded SOC are usually idle. When comparing
Figures 8(c) and (d) with (a) and (b), it can be seen that
the control strategy can ensure the charging demand of EVs
with lower initial SOC levels. Figure 8 shows that the EV
aggregator control strategy can secure EV charging demand.
Figure 9 illustrates the increased charging time of Case2
and Case3. In Figure 9(a), the distribution shape of Case3
is similar to that of the tolerance, while Case2 is out of the
tolerance range. Additionally, Figure 9 (b) shows the ratio of
increased charging time to tolerance for every EV. In Case
2, parts of EVs exceed the tolerance, while the tolerance in
Case 3 limits the increased charging times. In addition, the
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Fig. 10. System dynamic results

scatter plots of increased charging time in Figure 9(c) and (d)
show again that the tolerance of increased charging time is
violated in Case2 but obeyed in Case3. Figure 9 verifies that
the tolerance of charging time constraints is followed well by
using the proposed charging time constraints.

In summary, Figure 6 demonstrates the EV aggregator’s
dynamic performance in accurately delivering power signals.
Figure 7 confirms method robustness under varied failure rates,
supported by numerous EVs. Figure 8 highlights successful
charging time constraint application, while Figure 9 validates
charging time adherence. This approach not only confirms dy-
namic performance but also sustains charging time constraints.

E. System results

Figure 10 shows the dynamic results of the system. Figure
10 (a) illustrates the COI frequency of the system. The spikes

9
TABLE III
SYSTEM FREQUENCY REGULATION METRICS
Casel Case2 Case3

Freq. Dev. mean [Hz] 0 0.00001 0.00001
Freq. Dev. Std. [Hz] 0.00623 0.00600 0.00603
ACE mean [MW] -0.01521 -0.0522 -0.03912
ACE Std. [MW] 21.77829 20.97947 21.07158
CPS1 score 153.08869 156.70854 156.26189
AGC mileage [MWh] 8277.79918  8940.76994  8864.53066
EV AGC mileagelMWh] 0 2043.33919  1801.41695

TABLE IV

SYSTEM ECONOMIC RESULTS
Casel Case2 Case3

Generation cost [$] 133,031.395  132,500.647  132,556.211
Mileage payment [$] 8,195.021 8,851.362 8,775.885
Mileage payment to EV [$] 0 2,022.906 1,783.403
ICT compensation to EV [$] 0 846.1502 0.00087
System total cost [$] 141,226.416  142,198.159  141,332.097

of Case2 and Case3 are slightly lower than those of Casel, but
Case2 and Case3 overlap almost. A similar condition can be
seen from the distribution of the COI frequency as shown in
Figure 10(b). The distribution of the COI frequency deviation
is more concentrated in Case2 and Case3 than in Casel, and
the variation is slightly more concentrated in Case3 than in
Case2. Figure 10(c) shows the system ACE. This figure is
similar to Figure 10(a) because the test system is controlled
as one area. Figure 10 (d) shows the total AGC input signal of
the system, where the dashed lines represent the SFR capacity.
The figure indicates that the SFR capacities are sufficient in all
three test cases. However, when comparing Case2 and Case3
versus Casel, it can be found that when the EV provides
SFR, the system assigns more RegDn power while less RegUp
power.

To be more specific, Table III shows the metrics of system
frequency regulation. When looking at the CPS1 score, it can
be found that EV providing SFR enhances the CPS1 score by
comparing Case2 and Case3 versus Casel. In addition, Case2
and Case3 consumed more AGC mileage than Casel. Compar-
ing Case2 versus Case3 shows that their dynamic performance
is close, although, in Case3, the charging time constraints
slightly degraded the frequency metrics. In summary, Table III
indicates that EV providing SFR slightly enhanced the system
dynamic performance while consuming more AGC mileage.
The charging time constraints of EV aggregators bring a few
impacts on the system’s dynamic performance.

The balancing factors of the three cases are illustrated in
Figure 11. When comparing Case2 and Case3, it can be seen
that the balancing factors of the EV aggregator in Case3
are lower than those of Case2 for both RegUp and RegDn.
This indicated that the charging time constraints resulted in a
decrease in frequency regulation capacities.
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Fig. 11. System balancing factors

Table IV shows the system’s economic results. When com-
paring Case2 and Case3 versus Casel, it can be seen that
EV-providing SFR reduces the system generation cost. This is
caused by the decreased load from the EV charging station
when EV provides SFR. Consistent with AGC mileage in
Table III, EV participating SFR results in higher mileage
payment, and the mileage payment of Case3 is close to Case2.
Regarding the compensation for extra increased charging time,
by comparing Case 2 versus Case 3, it should be noticed
that there is almost zero compensation in Case 3. Further,
the system total cost shows that Case3 is lower than Case2
while close to Casel. Table IV implies that EV aggregators
with charging time constraints have limited impacts on the
system’s economic performance.

The Case Studies demonstrate the benefits of charging
time-constrained EV aggregation providing SFR. First, the
reliable real-time delivery of the EV aggregator proving SFR
is verified. Second, a slightly increased total cost improves the
system’s dynamic performance. Third, the increased charging
time is secured with the proposed charging time constraints.

V. CONCLUSION

In conclusion, this paper proposes an EV charging time-
constrained deliverable SFR provision model. First, the state
space modeling addresses the uncertainties from EV hetero-
geneous parameters and traveling behaviors. The EV owner’s
preference translation respects the charging time into a real-
time AGC activation limiter for the individual EV. Second,
estimating EV SFR capacities facilitates inter-interval SFR
reserve procurement, and the EV aggregation strategy reliably
delivers real-time intra-interval AGC response. Third, a hybrid
OPF structure is proposed in the RTED-TDS cosimulation to
evaluate the economic and reliability performance of EV ag-
gregation’s SFR provision. The proposed structure can secure
the broadcasting dispatch results into the dynamic simulation,
reducing the overall cosimulation modeling complexity. Last,

the proposed charging time-constrained EV aggregation is
verified using the RTED-TDS cosimulation framework on
IEEE 39-bus system. Results indicate that the proposed model
can improve the system’s dynamic performance and respect
the EV owners’ tolerance of increased charging time.
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